A direct variation includes the points \( (9,18) \) and \( (4, n) \). Find \( n \). Write and solve a direct variation equation to find the answer. \( \quad n= \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
In a direct variation, the relationship between two variables \( x \) and \( y \) can be expressed with the equation \( y = kx \), where \( k \) is a constant. Using the point \( (9, 18) \), we can find \( k \) by substituting: \[ 18 = k \cdot 9 \implies k = \frac{18}{9} = 2 \] Now, using \( k = 2 \), we can find \( n \) using the point \( (4, n) \): \[ n = 2 \cdot 4 = 8 \] Thus, \( n = 8 \). Using the relationship established by direct variation can be handy in various real-life situations, such as physics and economics. For instance, if the distance traveled by an object is directly proportional to the time spent traveling, knowing one of the values allows you to determine the other easily. So, if a car travels 60 miles in 1 hour, it will travel 120 miles in 2 hours using the same ratio!
