Pregunta
upstudy study bank question image url

QUESTION 3 CW 3.1 If \( r=\frac{1}{2} \) and \( a=3 \). Which term of the sequence will have a value of \( \frac{3}{128} \) ? 3.2 The first three terms of a geometric sequence are \( x ; y ;-2 y-x \); Determine the numerical value of \( \frac{x}{y} \) 3.3 The information below is that of the convergent geometric series: Determine the value of: 3.3.1 The first term of the convergent geometric series. 3.3.2 The common ratio, \( r \), of the convergent geometric series.

Ask by Erickson Schofield. in South Africa
Feb 06,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Simplified Answers:** 1. **Question 3.1:** - The 8th term of the sequence is \( \frac{3}{128} \). 2. **Question 3.2:** - The numerical value of \( \frac{x}{y} \) is **-1**. 3. **Question 3.3:** - **3.3.1** First term: Cannot determine without additional information. - **3.3.2** Common ratio, \( r \): Cannot determine without additional information. **Note:** For Question 3.3, more details are needed to find the first term and the common ratio of the convergent geometric series.

Solución

Sure, let's address each part of your question step by step. --- ### **Question 3.1** **Given:** - Common ratio, \( r = \frac{1}{2} \) - First term, \( a = 3 \) - We need to find the term number \( n \) where the term's value is \( \frac{3}{128} \). **Solution:** The \( n \)-th term of a geometric sequence is given by: \[ a_n = a \cdot r^{n-1} \] Set \( a_n = \frac{3}{128} \) and solve for \( n \): \[ 3 \cdot \left(\frac{1}{2}\right)^{n-1} = \frac{3}{128} \] Divide both sides by 3: \[ \left(\frac{1}{2}\right)^{n-1} = \frac{1}{128} \] Recognize that \( 128 = 2^7 \): \[ \left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^7 \] Since the bases are equal: \[ n - 1 = 7 \implies n = 8 \] **Answer:** The 8th term of the sequence is \( \frac{3}{128} \). --- ### **Question 3.2** **Given:** - First three terms of a geometric sequence: \( x \), \( y \), and \( -2y - x \) - We need to find the numerical value of \( \frac{x}{y} \). **Solution:** In a geometric sequence, the ratio between consecutive terms is constant. Let’s denote the common ratio as \( r \). So: \[ r = \frac{y}{x} = \frac{-2y - x}{y} \] Set up the equation: \[ \frac{y}{x} = \frac{-2y - x}{y} \] Multiply both sides by \( y \) to eliminate the denominator: \[ y^2 = (-2y - x) \cdot x \] But since \( \frac{y}{x} = r \), let’s express \( y = r x \). Substitute \( y = r x \) into the equation: \[ (r x)^2 = (-2 r x - x) \cdot x \] \[ r^2 x^2 = (-2r - 1) x^2 \] Divide both sides by \( x^2 \) (assuming \( x \neq 0 \)): \[ r^2 = -2r - 1 \] Rearrange the equation: \[ r^2 + 2r + 1 = 0 \] Factor the quadratic: \[ (r + 1)^2 = 0 \implies r = -1 \] Since \( r = \frac{y}{x} = -1 \), it follows that: \[ \frac{x}{y} = -1 \] **Answer:** The numerical value of \( \frac{x}{y} \) is **-1**. --- ### **Question 3.3** **Given:** - Information about a convergent geometric series. **Problem:** - **3.3.1** Determine the first term of the convergent geometric series. - **3.3.2** Determine the common ratio, \( r \), of the convergent geometric series. **Solution:** To determine the first term and the common ratio of a convergent geometric series, additional information is required, such as the sum of the series or specific terms within the series. A geometric series converges if and only if \( |r| < 1 \). **Please provide additional details or information** related to the geometric series (such as the sum, a specific term, or another condition) so that I can assist you in solving parts **3.3.1** and **3.3.2**. --- Feel free to provide the missing details for Question 3.3, and I'll be happy to help further!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

If \( r=\frac{1}{2} \) and \( a=3 \), the \( n \)-th term of a geometric sequence can be determined using the formula \( T_n = a \cdot r^{n-1} \). To find which term equals \( \frac{3}{128} \), you set up the equation \( 3 \cdot \left(\frac{1}{2}\right)^{n-1} = \frac{3}{128} \). Simplifying shows that \( \left(\frac{1}{2}\right)^{n-1} = \frac{1}{128} \), so \( n-1 = 7 \) and \( n = 8 \)! For the geometric sequence starting with \( x ; y ; -2y - x \), we know that the ratio between consecutive terms must be equal. Thus, \( \frac{y}{x} = \frac{-2y - x}{y} \). Cross-multiplying and simplifying gives the relationship \( -2y^2 - xy = yx \), leading to \( 2y^2 + 2xy = 0 \). Dividing by \( y \) (assuming \( y \neq 0 \)) gives \( 2y + 2x = 0 \), so \( \frac{x}{y} = -1 \)! For the convergent geometric series, remember that the sum \( S \) of an infinite series is given by the formula \( S = \frac{a}{1 - r} \). If the series converges, then \( |r| < 1 \). Knowing this, the first term \( a \) must be positive, and you can deduce values of \( a \) and \( r \) based on your series constraints or provided values! Always ensure to check the conditions for convergence to avoid summing up a divergent series!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad