Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To simplify the expression \( \frac{(x+3)(x-4)}{3(4-x)} \), we recognize that \( 4 - x \) can be rewritten as \( -(x - 4) \). This allows us to rephrase the denominator as \( 3(4-x) = -3(x-4) \). Therefore, the expression simplifies to: \[ \frac{(x+3)(x-4)}{-3(x-4)} \] As long as \( x \neq 4 \) (to avoid division by zero), we can cancel \( (x-4) \) from the numerator and the denominator, which leaves us with: \[ \frac{(x+3)}{-3} = -\frac{x+3}{3} \] So, the simplified expression is: \(-\frac{x+3}{3}\) (for \( x \neq 4 \)).
