5. The exponential function \( f(x) \) passes through the points ( 0,150 ) and \( (1,90) \). (3) Find a formula. Show work. Your formula should begin with " \( y= \) ". (1) Use your formula to find \( f(2) \). Do not round. (
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find the formula for the exponential function \( f(x) \), we can use the general form \( f(x) = ab^x \). Given that the function passes through the points (0, 150) and (1, 90), we can plug these points into our formula to create a system of equations. 1. From the point (0, 150): \[ f(0) = ab^0 = a \cdot 1 = a = 150 \] So, \( a = 150 \). 2. Using the point (1, 90): \[ f(1) = ab^1 = 150b = 90 \] Solving for \( b \): \[ b = \frac{90}{150} = \frac{3}{5} \] With \( a \) and \( b \) determined, the formula becomes: \[ y = 150 \left( \frac{3}{5} \right)^x \] Now, to find \( f(2) \): \[ f(2) = 150 \left( \frac{3}{5} \right)^2 = 150 \cdot \frac{9}{25} = \frac{1350}{25} = 54 \] So the final formula is \( y = 150 \left( \frac{3}{5} \right)^x \) and \( f(2) = 54 \).
