Pregunta
upstudy study bank question image url

Since \( e^{1} \approx 2.718 \) and \( e^{2} \approx 7.389 \), betweet what two consecutive imerets is \( \ln 5.6 \) ? A. 5 and 6 B. 2 and 3 C. 1 and 2 D. 0 and 1 Concepr Check Without usinig a calculator, afve the value of long 10 rot Concept Check Without using a calculator, give the value of \( \ln e^{v 1} \)

Ask by Warren Kirk. in the United States
Feb 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

ln(5.6) is between 1 and 2, and ln(e¹) is 1.

Solución

We know that ln is the inverse of the exponential function. Given that   e¹ ≈ 2.718  and  e² ≈ 7.389, and since 5.6 lies between 2.718 and 7.389, it follows that ln(5.6) must lie between 1 and 2. Therefore, the correct answer is:   C. 1 and 2. For the second concept check: When you see ln(e^(v1)) (which is likely intended to be ln(e¹)), recall that one of the basic properties of logarithms is   ln(e^x) = x. Thus, ln(e^1) = 1. So, without using a calculator, we determine: • ln(5.6) lies between 1 and 2. • ln(e^1) = 1.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine between which two consecutive integers \( \ln 5.6 \) falls, we can use the approximations of \( e^1 \approx 2.718 \) and \( e^2 \approx 7.389 \). Since \( 5.6 \) is greater than \( 2.718 \) and less than \( 7.389 \), it follows that \( \ln 5.6 \) is between \( 1 \) and \( 2 \). Therefore, the answer is **C. 1 and 2**. For the concept check regarding \( \ln 10 \), we know that \( e^2 \approx 7.389 \) and \( e^3 \approx 20.085 \). Since \( 10 \) is between these two values, we expect \( \ln 10 \) to fall between \( 2 \) and \( 3 \). As for \( \ln e^{v 1} \), using the properties of logarithms, we can simplify it to \( v 1 \), since \( \ln e^x = x \). So, \( \ln e^{v 1} = v 1 \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad