Pregunta
upstudy study bank question image url

1. \( y=x^{3}+8 \)

Ask by Lambert Huang. in the United States
Feb 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( y = x^{3} + 8 \) can be factored as \( (x + 2)(x^{2} - 2x + 4) \). It has a real zero at \( x = -2 \) and a y-intercept at (0, 8). The graph is a cubic shifted upward by 8 units.

Solución

It looks like you’re working with the function   y = x³ + 8. Since there isn’t a specific question attached to the function, here are several useful pieces of information and ways to work with it: 1. Factorization (using the sum‐of‐cubes formula):  The sum‐of‐cubes formula states that   a³ + b³ = (a + b)(a² – ab + b²).  Here, we can write 8 as 2³. Taking a = x and b = 2, we have   x³ + 8 = x³ + 2³ = (x + 2)(x² – 2x + 4). 2. Zeros of the function:  To find the real zero, set y = 0:   x³ + 8 = 0 ⟹ x³ = –8 ⟹ x = –2.  Thus, the function has a single real root, x = –2. (The quadratic factor, x² – 2x + 4, has a discriminant of (–2)² – 4·1·4 = 4 – 16 = –12, indicating two complex conjugate roots.) 3. Intercepts:  • y-intercept: Set x = 0:   y = 0³ + 8 = 8.   So the graph passes through (0, 8).  • x-intercept: As found above, the only x-intercept is (–2, 0). 4. End Behavior:  Since the function is a cubic (with positive leading coefficient):   • As x → +∞, y → +∞.   • As x → –∞, y → –∞. 5. Graph and Transformation:  The graph of y = x³ + 8 is the standard cubic function y = x³ shifted upward by 8 units. (Be careful: this is not a horizontal shift.) 6. Inflection Point:  For the standard cubic function y = x³, the inflection point is at (0, 0). An upward translation by 8 moves the inflection point to (0, 8). In summary, the function y = x³ + 8 can be rewritten as   y = (x + 2)(x² – 2x + 4), has a real zero at x = –2, a y-intercept at (0, 8), and its graph is a vertically translated version of y = x³.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that polynomial functions, like \( y = x^{3} + 8 \), have been studied for centuries? Ancient Greeks and mathematicians like Descartes explored their properties, but it wasn’t until the 17th century that people started to understand roots and graphing behaviors. The cubic function here features a constant, shifting the graph vertically by 8 units, creating unique challenges and beauty in its shape—who doesn’t love a classic curve? In practice, cubic functions are important in fields such as physics and engineering. They model various natural phenomena, from the trajectory of projectiles to the population growth of certain species under specific conditions. When you graph this equation, its distinctive shape can represent complex real-world scenarios, including stress-strain relationships in materials or optimizing areas within constraints. It’s math meeting the mechanics of our world!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad