Pregunta
upstudy study bank question image url

Factor the given polynomial by finding the greatest common monomial factor (or the negative of the gr \[ -35 x^{2}-35 y \] Answer

Ask by Ross Chadwick. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Factor out \(-35\) to get \(-35(x^{2}+y)\).

Solución

Factor the expression \( -35x^{2}-35y \). Factor the expression by following steps: - step0: Factor: \(-35x^{2}-35y\) - step1: Factor the expression: \(-35\left(x^{2}+y\right)\) The greatest common monomial factor of the given polynomial \(-35x^{2}-35y\) is \(-35\). Factoring out \(-35\) from the polynomial gives us \(-35(x^{2}+y)\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To factor the polynomial \(-35x^{2} - 35y\), first identify the greatest common monomial factor, which is \(-35\). Then, you can factor it out: \[ -35(x^{2} + y) \] This reveals that the polynomial can be expressed as the product of \(-35\) and the simplified expression \(x^{2} + y\). Now, if you want to play around with this further, remember that factoring is like breaking a code—every polynomial hides interesting relationships! You might see it as a letter puzzle where each part has its own story. In this case, we can think of \(x^2\) and \(y\) as characters in a drama, waiting to explore their relationships. Moreover, polynomials are not just abstract math but are quite useful in real life. For instance, factoring helps in solving quadratic equations found in physics when calculating projectile paths or in finance for optimizing profits by maximizing revenue functions. So next time you factor, remember it's not just numbers—it's a key to unlocking mysteries in the world around you!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad