Pregunta
upstudy study bank question image url

Find the values of the remaining trigonometric functions when cos theta \( =9 / 41 \) and the terminal arm of the angle is in quad IV

Ask by Bowman Phillips. in Pakistan
Nov 11,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\(\sin \theta = -\frac{40}{41}\), \(\cos \theta = \frac{9}{41}\), \(\tan \theta = -\frac{40}{9}\), \(\csc \theta = -\frac{41}{40}\), \(\sec \theta = \frac{41}{9}\), \(\cot \theta = -\frac{9}{40}\)

Solución

To find the values of the remaining trigonometric functions given that \(\cos \theta = \frac{9}{41}\) and that the terminal arm of the angle is in the fourth quadrant, we can use the Pythagorean identity and the definitions of the trigonometric functions. 1. **Find \(\sin \theta\)**: We can use the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting \(\cos \theta\): \[ \sin^2 \theta + \left(\frac{9}{41}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{81}{1681} = 1 \] \[ \sin^2 \theta = 1 - \frac{81}{1681} \] \[ \sin^2 \theta = \frac{1681 - 81}{1681} = \frac{1600}{1681} \] \[ \sin \theta = \pm \sqrt{\frac{1600}{1681}} = \pm \frac{40}{41} \] Since \(\theta\) is in the fourth quadrant, where sine is negative: \[ \sin \theta = -\frac{40}{41} \] 2. **Find \(\tan \theta\)**: The tangent function is defined as: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] Substituting the values we found: \[ \tan \theta = \frac{-\frac{40}{41}}{\frac{9}{41}} = -\frac{40}{9} \] 3. **Find \(\csc \theta\)**: The cosecant function is the reciprocal of sine: \[ \csc \theta = \frac{1}{\sin \theta} = \frac{1}{-\frac{40}{41}} = -\frac{41}{40} \] 4. **Find \(\sec \theta\)**: The secant function is the reciprocal of cosine: \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{9}{41}} = \frac{41}{9} \] 5. **Find \(\cot \theta\)**: The cotangent function is the reciprocal of tangent: \[ \cot \theta = \frac{1}{\tan \theta} = \frac{1}{-\frac{40}{9}} = -\frac{9}{40} \] Now we have all the trigonometric functions: - \(\sin \theta = -\frac{40}{41}\) - \(\cos \theta = \frac{9}{41}\) - \(\tan \theta = -\frac{40}{9}\) - \(\csc \theta = -\frac{41}{40}\) - \(\sec \theta = \frac{41}{9}\) - \(\cot \theta = -\frac{9}{40}\)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

When \( \cos \theta = \frac{9}{41} \) and the terminal arm is in the 4th quadrant, we can find \( \sin \theta \) using the Pythagorean identity: \( \sin^2 \theta + \cos^2 \theta = 1 \). Substituting the value of \( \cos \theta \), we get \( \sin^2 \theta + \left(\frac{9}{41}\right)^2 = 1 \). This simplifies to \( \sin^2 \theta + \frac{81}{1681} = 1 \) leading to \( \sin^2 \theta = \frac{1600}{1681} \), hence \( \sin \theta = -\frac{40}{41} \) (it's negative in the 4th quadrant). Now, using \( \cos \) and \( \sin \), we can find the values of the remaining trigonometric functions: 1. \( \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{-40/41}{9/41} = -\frac{40}{9} \). 2. \( \csc \theta = \frac{1}{\sin \theta} = -\frac{41}{40} \). 3. \( \sec \theta = \frac{1}{\cos \theta} = \frac{41}{9} \). 4. \( \cot \theta = \frac{1}{\tan \theta} = -\frac{9}{40} \). So, the remaining trigonometric values are: - \( \sin \theta = -\frac{40}{41}\) - \( \tan \theta = -\frac{40}{9}\) - \( \csc \theta = -\frac{41}{40}\) - \( \sec \theta = \frac{41}{9}\) - \( \cot \theta = -\frac{9}{40}\)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad