\( \lim _ { \Delta x \rightarrow 0 } \frac { \sqrt { \tan ( x + \Delta x ) } - \sqrt { \tan x } } { \Delta x } \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To evaluate the limit, we can recognize that we are looking for the derivative of \( \sqrt{\tan x} \) with respect to \( x \). We can express the limit in the form of a derivative: \[ \lim _ { \Delta x \rightarrow 0 } \frac { \sqrt { \tan ( x + \Delta x ) } - \sqrt { \tan x } } { \Delta x } = \frac{d}{dx} \left( \sqrt{\tan x} \right). \] To find this derivative, we can use the chain rule. Recall that if \( u = \tan x \), then \( \sqrt{u} \) gives us: \[ \frac{d}{dx} \left( \sqrt{\tan x} \right) = \frac{1}{2\sqrt{\tan x}} \cdot \frac{d}{dx} (\tan x). \] Now, we know the derivative of \( \tan x \) is \( \sec^2 x \): \[ \frac{d}{dx} \left( \tan x \right) = \sec^2 x. \] Putting it all together: \[ \frac{d}{dx} \left( \sqrt{\tan x} \right) = \frac{1}{2\sqrt{\tan x}} \cdot \sec^2 x. \] Thus, the limit evaluates to: \[ \boxed{\frac{\sec^2 x}{2\sqrt{\tan x}}}. \]
