Simplify the expression completely if possible. \[ \frac{8 x}{x^{3}+4 x^{2}} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To simplify the expression \(\frac{8 x}{x^{3}+4 x^{2}}\), we first factor the denominator. The denominator can be factored as follows: \[ x^{3} + 4x^{2} = x^{2}(x + 4) \] Now, we rewrite the expression using this factorization: \[ \frac{8 x}{x^{2}(x + 4)} \] Next, we can simplify by canceling out the common term \(x\) in the numerator and one \(x\) from the denominator (provided \(x \neq 0\)): \[ \frac{8}{x(x + 4)} \] Thus, the simplified expression is: \[ \frac{8}{x(x + 4)} \quad \text{where } x \neq 0 \]
