\( \left(a^{3}\right)^{2} \times a^{4} \) the following: \( 2-32 p^{2} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
Let's break this down step by step! First, using the power of a power rule, you multiply the exponents in \( \left(a^{3}\right)^{2} \), which gives us \( a^{6} \). Then, we can combine that with \( a^{4} \) by adding their exponents: \( a^{6} \times a^{4} = a^{10} \). Now for the expression \( 2 - 32p^{2} \). This represents a simple subtraction. If you're looking to factor this expression, you can factor out a 2, which leaves you with \( 2(1 - 16p^{2}) \). The term inside the parentheses is a difference of squares, which could be factored further into \( 2(1 - 4p)(1 + 4p) \).
