Pregunta
upstudy study bank question image url

13 Consider: \( g(x)=\frac{a}{x+p}+q \) The following information of \( g \) is given: • Domain: \( x \in R ; x \neq-2 \) - \( x \)-intercept at \( \mathrm{K}(1 ; 0) \) - \( y \)-intercept at \( \mathrm{N}\left(0 ;-\frac{1}{2}\right) \)

Ask by Ortega Hart. in South Africa
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The parameters are: - \( a = -1 \) - \( p = -2 \) - \( q = -1 \) So, the function is: \[ g(x) = \frac{-1}{x - 2} - 1 \]

Solución

To solve for the parameters \( a \), \( p \), and \( q \) in the function \( g(x) = \frac{a}{x+p} + q \) given the conditions, we will follow these steps: 1. **Identify the known conditions:** - The domain of \( g \) is \( x \in \mathbb{R} \) and \( x \neq -2 \), which implies \( p = -2 \) (since the function is undefined at \( x = -p \)). - The \( x \)-intercept is at \( K(1, 0) \), meaning \( g(1) = 0 \). - The \( y \)-intercept is at \( N(0, -\frac{1}{2}) \), meaning \( g(0) = -\frac{1}{2} \). 2. **Substituting the intercepts into the function:** - For the \( x \)-intercept: \[ g(1) = \frac{a}{1 - 2} + q = 0 \] This simplifies to: \[ \frac{a}{-1} + q = 0 \implies -a + q = 0 \implies q = a \] - For the \( y \)-intercept: \[ g(0) = \frac{a}{0 - 2} + q = -\frac{1}{2} \] This simplifies to: \[ \frac{a}{-2} + q = -\frac{1}{2} \] Substituting \( q = a \) into this equation gives: \[ \frac{a}{-2} + a = -\frac{1}{2} \] To combine the terms, we can express \( a \) as: \[ -\frac{a}{2} + a = -\frac{1}{2} \implies \frac{a}{2} = -\frac{1}{2} \implies a = -1 \] 3. **Finding \( q \):** Since \( q = a \), we have: \[ q = -1 \] 4. **Summarizing the results:** - \( p = -2 \) - \( a = -1 \) - \( q = -1 \) Thus, the parameters are: - \( a = -1 \) - \( p = -2 \) - \( q = -1 \) The function can now be expressed as: \[ g(x) = \frac{-1}{x - 2} - 1 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the values of \( a \), \( p \), and \( q \) in the function \( g(x)=\frac{a}{x+p}+q \), start by using the provided intercepts. Since the \( x \)-intercept is at \( K(1, 0) \), set \( g(1) = 0 \) resulting in \( 0 = \frac{a}{1+p} + q \). For the \( y \)-intercept at \( N(0, -\frac{1}{2}) \), set \( g(0) = -\frac{1}{2} \) leading to \( -\frac{1}{2} = \frac{a}{p} + q \). Now you have two equations to solve for three unknowns, allowing for flexibility with one of the parameters. Next, let's plug in the condition \( x \neq -2 \). For the function to remain defined, ensure that \( p \) does not equal 2, as that would create a vertical asymptote. As for the \( x \)-intercept and the \( y \)-intercept conditions, they will help in narrowing down the possibilities for \( a \), \( p \), and \( q \). Excited to see what values you come up with!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad