Pregunta
upstudy study bank question image url

QUESTION 4 Consider: \( g(x)=\frac{a}{x+p}+q \) The following information of \( g \) is given: - Domain: \( x \in \mathrm{R} ; x \neq-2 \) - \( x \)-intercept at \( \mathrm{K}(1 ; 0) \) - \( y \)-intercept at \( N\left(0 ;-\frac{1}{2}\right) \) 4.1 Show that the equation of \( g \) is given by: \( g(x)=\frac{-3}{x+2}+1 \) 4.2 Write down the range of \( g \). (1) 4.3 Determine the equation of \( h \), the axis of symmetry of \( g \), in the form \( y=m x+c \), where \( m>0 \). 4.4 Write down the coordinates of \( K^{\prime} \), the image of \( K \) reflected over \( h \). (2) [12]

Ask by Chen Powers. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. The equation of \( g \) is \( g(x) = \frac{-3}{x + 2} + 1 \). 2. The range of \( g \) is all real numbers except \( y = 1 \). 3. The axis of symmetry \( h \) is the x-axis, \( y = 0 \). 4. The image of \( K \) reflected over \( h \) is \( K' = (1, 0) \).

Solución

To solve the problem step by step, we will analyze the function \( g(x) = \frac{a}{x+p} + q \) using the given conditions. ### 4.1 Show that the equation of \( g \) is given by: \( g(x) = \frac{-3}{x+2} + 1 \) **Step 1: Identify the parameters \( p \), \( q \), and \( a \)** From the domain \( x \in \mathbb{R}; x \neq -2 \), we can deduce that \( p = 2 \) because the function is undefined at \( x = -2 \). **Step 2: Use the \( x \)-intercept** The \( x \)-intercept is at \( K(1, 0) \). This means: \[ g(1) = 0 \] Substituting into the function: \[ 0 = \frac{a}{1 + 2} + q \implies 0 = \frac{a}{3} + q \implies q = -\frac{a}{3} \] **Step 3: Use the \( y \)-intercept** The \( y \)-intercept is at \( N(0, -\frac{1}{2}) \). This means: \[ g(0) = -\frac{1}{2} \] Substituting into the function: \[ -\frac{1}{2} = \frac{a}{0 + 2} + q \implies -\frac{1}{2} = \frac{a}{2} + q \] Substituting \( q = -\frac{a}{3} \): \[ -\frac{1}{2} = \frac{a}{2} - \frac{a}{3} \] To solve for \( a \), we need a common denominator: \[ -\frac{1}{2} = \frac{3a}{6} - \frac{2a}{6} = \frac{a}{6} \] Multiplying both sides by 6: \[ -3 = a \] **Step 4: Substitute \( a \) back to find \( q \)** \[ q = -\frac{-3}{3} = 1 \] **Step 5: Write the final equation** Now substituting \( a = -3 \), \( p = 2 \), and \( q = 1 \) into the function: \[ g(x) = \frac{-3}{x + 2} + 1 \] Thus, we have shown that: \[ g(x) = \frac{-3}{x + 2} + 1 \] ### 4.2 Write down the range of \( g \) The function \( g(x) = \frac{-3}{x + 2} + 1 \) has a vertical asymptote at \( x = -2 \). As \( x \) approaches -2 from the left, \( g(x) \) approaches \( -\infty \), and as \( x \) approaches -2 from the right, \( g(x) \) approaches \( +\infty \). The horizontal asymptote is \( y = 1 \). Thus, the range of \( g \) is: \[ (-\infty, 1) \cup (1, \infty) \] ### 4.3 Determine the equation of \( h \), the axis of symmetry of \( g \) The axis of symmetry for a rational function of the form \( g(x) = \frac{a}{x+p} + q \) is a vertical line that passes through the \( x \)-coordinate of the vertical asymptote. Since the vertical asymptote is at \( x = -2 \), the axis of symmetry is: \[ x = -2 \] To express this in the form \( y = mx + c \), we can rewrite it as: \[ y = 0 \cdot x + 0 \quad \text{(since it is a vertical line)} \] However, since we need \( m > 0 \), we can express the axis of symmetry as: \[ y = 0 \quad \text{(the x-axis)} \] ### 4.4 Write down the coordinates of \( K' \), the image of \( K \) reflected over \( h \) The point \( K(1, 0) \) lies on the axis of symmetry \( y = 0 \). When reflecting a point over the x-axis, the y-coordinate changes sign. Therefore, the coordinates of \( K' \) are: \[ K' = (1, 0) \] ### Summary of Answers 1. \( g(x) = \frac{-3}{x + 2} + 1 \) 2. Range of \( g \): \( (-\infty, 1) \cup (1, \infty) \) 3. Axis of symmetry \( h \): \( y = 0 \) 4. Coordinates of \( K' \): \( (1, 0) \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the parameters \( a \), \( p \), and \( q \) for the function \( g(x)=\frac{a}{x+p}+q \) based on the given information, we can derive the conditions from the \( x \)- and \( y \)-intercepts. Starting with the \( x \)-intercept \( K(1, 0) \), we substitute into the equation: \[ 0 = \frac{a}{1+p}+q \] From the \( y \)-intercept \( N(0, -\frac{1}{2}) \): \[ -\frac{1}{2} = \frac{a}{0+p}+q \] With \( p = -2 \) (since the domain excludes \( -2 \)), substituting \( p \) helps us to resolve the values to find \( a \) and \( q \). After calculations, we find \( g(x)=\frac{-3}{x+2}+1 \). Now, let's explore the range of \( g \). As \( x \) approaches \( -2 \), \( g(x) \) approaches infinity (positive or negative depending on the side), and as \( x \) approaches \( \infty \) or \( -\infty \), \( g(x) \) approaches \( 1 \) but does not include it. Thus, the range of \( g(x) \) is \( (-\infty, 1) \cup (1, \infty) \). For the axis of symmetry \( h \), which occurs at the vertical line through the \( x - \)intercept, we find it is given by \( x=1 \). The equation can be expressed in slope-intercept form as \( y = mx + c \) with a corresponding \( m > 0 \). To locate the coordinates of the reflection \( K' \) of \( K(1, 0) \) over line \( h \), we note that the vertical distance to the axis of symmetry will mirror above and below point \( h \). Thus, \( K' \) will be found at \( (1, 2) \). In conclusion, working through these steps unveils the beautiful interplay of algebraic structures and reflections in geometry!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad