Pregunta
upstudy study bank question image url

A circle has the equation \( x^{2}+y^{2}=36 \). (a) Find the center ( \( \mathrm{h}, \mathrm{k} \) ) and radius r of the circle. (b) Graph the circle. (c) Find the intercepts, if any, of the graph. (a) The center of the circle is (Type an ordered pair, using integers or decimals.)

Ask by Davison Bird. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The center of the circle is (0, 0) and the radius is 6.

Solución

The equation of the circle is x² + y² = 36. (a) To find the center and radius, we compare the given equation with the standard form of a circle’s equation:   (x - h)² + (y - k)² = r². Here,   • h = 0 (since there is no term (x - h) and x² is just (x - 0)²),   • k = 0 (similarly for y² being (y - 0)²),   • r² = 36, so r = √36 = 6. Thus, the center is (0, 0) and the radius is 6. Answer for part (a): (0, 0)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The center of the circle is (0, 0) and the radius is 6. This is derived from the standard form of a circle's equation, which is \( (x - h)^2 + (y - k)^2 = r^2 \). Here, \( h \) and \( k \) represent the center's coordinates, and since the equation simplifies to \( x^2 + y^2 = 36 \), it indicates the center is at the origin and the radius \( r \) is the square root of 36. For graphing, you would draw a circle centered at the origin with a radius of 6. You can plot points at (6,0), (0,6), (-6,0), and (0,-6) to guide you in creating a perfect circle. To find the intercepts, since the center is at (0,0), both the x-intercepts and y-intercepts are where the circle intersects the axes: x-intercepts at (6,0) and (-6,0), and y-intercepts at (0,6) and (0,-6).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad