Pregunta
upstudy study bank question image url

A car service charges customers a flat fee per ride (which is higher during rush hour traffic) plus charges for each minute and each mile. Suppose that, in a certain metropolitan area during rush hour, the flat fee is \( \$ 5 \), the cost per minute is \( \$ 0.30 \), and the cost per mile is \( \$ 1.20 \). Let \( x \) be the number of minutes and \( y \) the number of miles. At the end of a ride, the driver said that the passenger owed \( \$ 11.30 \) and remarked that the number of minutes was three times the number of miles. Find the number of minutes and the number of miles for this trip. \( 5+0.30 x+1.20 y=11.30 \) (Do not include the \( \$ \) symbol in your answer. Do not simplify. Use integers or decimals for any numbers in the equation.) Complete the equation that represents the relationship between the number of minutes and number of miles. \( \square=0 \) (Do not simplify. Use integers or decimals for any numbers in the equation.)

Ask by Park Colon. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Number of minutes: 9 Number of miles: 3

Solución

Given: - Flat fee per ride during rush hour: $5 - Cost per minute: $0.30 - Cost per mile: $1.20 - Total cost for the ride: $11.30 - Relationship between the number of minutes and miles: \( x = 3y \) We can represent the total cost for the ride using the given information: \[ 5 + 0.30x + 1.20y = 11.30 \] Now, we need to find the number of minutes (\( x \)) and the number of miles (\( y \)) for this trip. We can solve the system of equations formed by the total cost equation and the relationship between minutes and miles. Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}5+0.3x+1.2y=11.3\\x=3y\end{array}\right.\) - step1: Substitute the value of \(x:\) \(5+0.3\times 3y+1.2y=11.3\) - step2: Simplify: \(5+2.1y=11.3\) - step3: Move the constant to the right side: \(2.1y=11.3-5\) - step4: Subtract the numbers: \(2.1y=6.3\) - step5: Divide both sides: \(\frac{2.1y}{2.1}=\frac{6.3}{2.1}\) - step6: Divide the numbers: \(y=3\) - step7: Substitute the value of \(y:\) \(x=3\times 3\) - step8: Calculate: \(x=9\) - step9: Calculate: \(\left\{ \begin{array}{l}x=9\\y=3\end{array}\right.\) - step10: Check the solution: \(\left\{ \begin{array}{l}x=9\\y=3\end{array}\right.\) - step11: Rewrite: \(\left(x,y\right) = \left(9,3\right)\) The solution to the system of equations is \( x = 9 \) and \( y = 3 \). Therefore, the number of minutes for this trip is 9 and the number of miles is 3.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the problem, we first establish the equations based on the given information. The total cost equation is: \[ 5 + 0.30x + 1.20y = 11.30. \] Subtracting the flat fee from both sides gives: \[ 0.30x + 1.20y = 6.30. \] Next, it’s stated that the number of minutes was three times the number of miles, which provides the second equation: \[ x = 3y. \] Now we can substitute \( x \) in the cost equation: \[ 0.30(3y) + 1.20y = 6.30. \] This simplifies to: \[ 0.90y + 1.20y = 6.30. \] Combining like terms results in: \[ 2.10y = 6.30. \] Now, dividing both sides by 2.10 gives: \[ y = 3. \] Now substituting back to find \( x \): \[ x = 3y = 3(3) = 9. \] Therefore, the number of minutes and the number of miles for this trip are \( x = 9 \) and \( y = 3 \). For the equation representing the relationship between the number of minutes and number of miles, we have: \( x - 3y = 0. \)

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad