Pregunta
upstudy study bank question image url

Use the Gauss-Jordan method to solve the system of equations. \[ \begin{array}{l} y=x-4 \\ y=-3+z \\ z=5-x \end{array} \] Select the correct choice below and fill in any answer boxes within your choice. A. There is one solution. The solution is \( (\square, \square) \), in the order \( x, y, z \). \( \square \) \( \square \) (Type an exact answer in simplified form.) B. There are infinitely many solutions. The solution is \( \square \) \( \square \) , \( z \) ), where \( z \) is any real number. (Type an exact answer in simplified form.) C. There is no solution.

Ask by Craig Gross. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There is one solution: \( (3, -1, 2) \).

Solución

Solve the system of equations \( y=x-4;y=-3+z;z=5-x \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}y=x-4\\y=-3+z\\z=5-x\end{array}\right.\) - step1: Substitute the value of \(y:\) \(\left\{ \begin{array}{l}x-4=-3+z\\z=5-x\end{array}\right.\) - step2: Substitute the value of \(z:\) \(x-4=-3+5-x\) - step3: Simplify: \(x-4=2-x\) - step4: Move the expression to the left side: \(x+x=2+4\) - step5: Add and subtract: \(2x=2+4\) - step6: Add and subtract: \(2x=6\) - step7: Divide both sides: \(\frac{2x}{2}=\frac{6}{2}\) - step8: Divide the numbers: \(x=3\) - step9: Substitute the value of \(x:\) \(z=5-3\) - step10: Calculate: \(z=2\) - step11: Substitute the value of \(x:\) \(y=3-4\) - step12: Calculate: \(y=-1\) - step13: Calculate: \(\left\{ \begin{array}{l}x=3\\y=-1\\z=2\end{array}\right.\) - step14: Check the solution: \(\left\{ \begin{array}{l}x=3\\y=-1\\z=2\end{array}\right.\) - step15: Rewrite: \(\left(x,y,z\right) = \left(3,-1,2\right)\) The system of equations has a unique solution, which is \( (x, y, z) = (3, -1, 2) \). Therefore, the correct choice is: A. There is one solution. The solution is \( (3, -1, 2) \), in the order \( x, y, z \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the system of equations using the Gauss-Jordan method, we first rewrite the equations in standard form: 1. \( y - x + 4 = 0 \) (which is \( -x + y + 4 = 0 \)) 2. \( y + 3 - z = 0 \) (which is \( y - z + 3 = 0 \)) 3. \( z + x - 5 = 0 \) (which is \( x + z - 5 = 0 \)) This can be expressed in augmented matrix form: \[ \begin{bmatrix} -1 & 1 & 0 & | & -4 \\ 0 & 1 & -1 & | & -3 \\ 1 & 0 & 1 & | & 5 \end{bmatrix} \] Now, we perform row operations to reach reduced row echelon form. First, let's interchange Row 1 and Row 3 for easier manipulation. \[ \begin{bmatrix} 1 & 0 & 1 & | & 5 \\ 0 & 1 & -1 & | & -3 \\ -1 & 1 & 0 & | & -4 \end{bmatrix} \] Next, we eliminate the first column of Row 3: - Row 3 + Row 1 (to eliminate the -1 in Row 3): \[ R3 = R3 + R1 \] \[ \begin{bmatrix} 1 & 0 & 1 & | & 5 \\ 0 & 1 & -1 & | & -3 \\ 0 & 1 & 1 & | & 1 \end{bmatrix} \] Next, eliminate Row 2 from Row 3: - Row 3 - Row 2: \[ R3 = R3 - R2 \] \[ \begin{bmatrix} 1 & 0 & 1 & | & 5 \\ 0 & 1 & -1 & | & -3 \\ 0 & 0 & 2 & | & 4 \end{bmatrix} \] Next, let's simplify the Row 3: \[ R3 = \frac{1}{2} R3 \] \[ \begin{bmatrix} 1 & 0 & 1 & | & 5 \\ 0 & 1 & -1 & | & -3 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \] Now, we will back substitute to eliminate \( z \) from Row 1 and Row 2: - Row 1 - Row 3 (using \( z \)): \[ R1 = R1 - R3 \] \[ \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & -1 & | & -3 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \] Now, substitute \( z = 2 \) into Row 2: \[ R2 = R2 + R3 \] \[ \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \] So, we have: - \( x = 3 \) - \( y = -1 \) - \( z = 2 \) Putting it all together, the solution is \( (3, -1, 2) \). Therefore, the correct choice is: A. There is one solution. The solution is \( (3, -1, 2) \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad