Pregunta
upstudy study bank question image url

11. In \( \triangle V W X, v=85 \mathrm{~cm}, x=58 \mathrm{~cm} \) and \( \angle X=107^{\circ} \). Find all possible values of \( \angle V \), to the nearest degree.

Ask by Wright Ryan. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The possible values of \( \angle V \) are \( 16^\circ \) and \( 164^\circ \).

Solución

To find the possible values of \( \angle V \) in triangle \( \triangle V W X \) given the sides \( v = 85 \, \text{cm} \), \( x = 58 \, \text{cm} \), and the angle \( \angle X = 107^\circ \), we can use the Law of Sines. The Law of Sines states that: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] In our case, we can denote: - \( a = v = 85 \, \text{cm} \) - \( b = x = 58 \, \text{cm} \) - \( C = \angle X = 107^\circ \) - \( A = \angle V \) - \( B = \angle W \) Using the Law of Sines, we can write: \[ \frac{v}{\sin V} = \frac{x}{\sin X} \] Substituting the known values: \[ \frac{85}{\sin V} = \frac{58}{\sin 107^\circ} \] Now, we can solve for \( \sin V \): \[ \sin V = \frac{85 \cdot \sin 107^\circ}{58} \] Next, we need to calculate \( \sin 107^\circ \) and then find \( \sin V \). Let's perform the calculations. Calculate the value by following steps: - step0: Calculate: \(\sin\left(107\right)\) Calculate or simplify the expression \( (85 * 0.184782) / 58 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(85\times 0.184782\right)}{58}\) - step1: Remove the parentheses: \(\frac{85\times 0.184782}{58}\) - step2: Multiply the numbers: \(\frac{15.70647}{58}\) - step3: Convert the expressions: \(\frac{\frac{1570647}{100000}}{58}\) - step4: Multiply by the reciprocal: \(\frac{1570647}{100000}\times \frac{1}{58}\) - step5: Multiply the fractions: \(\frac{1570647}{100000\times 58}\) - step6: Multiply: \(\frac{1570647}{5800000}\) We have calculated \( \sin 107^\circ \approx 0.184782 \). Now, substituting this value into our equation for \( \sin V \): \[ \sin V = \frac{85 \cdot 0.184782}{58} \approx 0.270801 \] Next, we need to find \( \angle V \) by taking the inverse sine: \[ V = \sin^{-1}(0.270801) \] Let's calculate \( V \). Calculate the value by following steps: - step0: Calculate: \(\arcsin\left(0.270801\right)\) Calculate or simplify the expression \( \arcsin(0.270801) \). Calculate the value by following steps: - step0: Calculate: \(\arcsin\left(0.270801\right)\) Calculate or simplify the expression \( 0.274225 * (180 / \pi) \). Calculate the value by following steps: - step0: Calculate: \(0.274225\times \frac{180}{\pi }\) - step1: Convert the expressions: \(\frac{10969}{40000}\times \frac{180}{\pi }\) - step2: Multiply the fractions: \(\frac{10969\times 180}{40000\pi }\) - step3: Multiply the terms: \(\frac{1974420}{40000\pi }\) - step4: Reduce the fraction: \(\frac{98721}{2000\pi }\) We found that: \[ V \approx 15.71^\circ \] However, since the sine function is positive in both the first and second quadrants, there is a possibility for another angle \( V' \): \[ V' = 180^\circ - V \approx 180^\circ - 15.71^\circ \approx 164.29^\circ \] Thus, the possible values for \( \angle V \) to the nearest degree are: 1. \( \angle V \approx 16^\circ \) 2. \( \angle V' \approx 164^\circ \) In conclusion, the possible values of \( \angle V \) are \( 16^\circ \) and \( 164^\circ \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve for angle \( V \) in triangle \( VWX \), we can use the Law of Cosines. The formula states: \[ c^2 = a^2 + b^2 - 2ab \cdot \cos(C) \] In this case: - \( a = v = 85 \, \text{cm} \) - \( b = x = 58 \, \text{cm} \) - \( C = \angle X = 107^{\circ} \) First, let's find the length of side \( w \) (the side opposite angle \( V \)): \[ w^2 = v^2 + x^2 - 2 \cdot v \cdot x \cdot \cos(X) \] \[ w^2 = 85^2 + 58^2 - 2 \cdot 85 \cdot 58 \cdot \cos(107^{\circ}) \] \[ w^2 = 7225 + 3364 - 2 \cdot 85 \cdot 58 \cdot (-0.2924) \quad (\text{using } \cos(107^{\circ}) \approx -0.2924) \] \[ w^2 = 10589 + 85 \cdot 58 \cdot 0.5848 \] Calculating \( 85 \cdot 58 \cdot 0.5848 \): \[ 85 \cdot 58 \approx 4930 \] \[ 4930 \cdot 0.5848 \approx 2882.5 \] Now adding to calculate \( w^2 \): \[ w^2 \approx 10589 + 2882.5 \approx 13471.5 \implies w \approx 116 \, \text{cm} \] Now, let's find angle \( V \) using the Law of Sines: \[ \frac{v}{\sin(V)} = \frac{w}{\sin(X)} \] Rearranging gives: \[ \sin(V) = \frac{v \cdot \sin(X)}{w} \] Substituting the values: \[ \sin(V) = \frac{85 \cdot \sin(107^{\circ})}{116} \] Calculating \( \sin(107^{\circ}) \approx 0.9511 \): \[ \sin(V) = \frac{85 \cdot 0.9511}{116} \approx \frac{80.85}{116} \approx 0.696 \implies V \approx \arcsin(0.696) \approx 44^{\circ} \] However, since \( \sin \) can have two solutions, we must also consider the supplementary angle: \[ V' = 180^{\circ} - 44^{\circ} \approx 136^{\circ} \] Thus, the possible values for \( \angle V \) are \( 44^{\circ} \) and \( 136^{\circ} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad