Pregunta
upstudy study bank question image url

Suppose is a symmetric matrix.
Some of the entries of are shown. Find the remaining entries.

Ask by Black Deleon. in the United States
Mar 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The completed matrix with known entries is:
The remaining entry cannot be determined with the given information.

Solución

To find the remaining entries of the matrix , we need to understand the properties of symmetric matrices and the multiplication of matrices.
Given that is a symmetric matrix, the product will also be symmetric. This means that the entries of the matrix satisfy the property .
The partially filled matrix is:
From the symmetry property, we can deduce the following:
  1. The entry in the first row and second column (denoted as ) must equal the entry in the second row and first column, which is . Therefore, .
  2. The entry in the first row and third column is , and the entry in the third row and first column must also be .
  3. The entry in the second row and third column is , and the entry in the third row and second column must also be .
Now, we can fill in the matrix with the known values:
To find the value of , we need to consider the properties of . The diagonal entries of are the dot products of the columns of with themselves. However, without additional information about the matrix , we cannot determine the exact value of .
Thus, the completed matrix with known entries is:
The remaining entry cannot be determined without further information about the matrix .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the remaining entries of the matrix , we’ll apply the properties of matrix multiplication.
Let’s denote as a 2x2 symmetric matrix:
The multiplication results in:
Now calculating :
From the values given, we can compare:
  1. The entry at position (1,1) provides .
  2. The entry at (2,2) gives .
  3. We need to find the entry (1,2), which is , and that is currently marked as .
  4. The entry at (2,1), since is symmetric, is also .
From and we can express :
Let . Then from we get and from we get .
To find , we have:
To express this in terms of , we need to use the conditions on and .
As an example, let’s substitute :
  1. Then , so or .
  2. Consequently, which gives or .
  3. For , so or .
Now, substituting , :
Hence, we can determine that:
The remaining entries are .
Putting all together, the full matrix would be:
Thus, the entry requested is .

preguntas relacionadas

Latest Other Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad