Ass ignm ent (1) A binary operation \( * \) is degined 00 er R(the set of real numbers) by \( x * y \) \( =x y+x^{2}+y^{2} \) for all \( x, y \in R \) a) determine whether or not bed \( H \) is commutative b) If \( x *(x+2)=49 \), find \( x \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
First, let’s tackle whether the binary operation \( * \) is commutative. We need to check if \( x * y = y * x \). By definition: \( x * y = xy + x^2 + y^2 \) Now, swapping \( x \) and \( y \): \( y * x = yx + y^2 + x^2 = xy + y^2 + x^2 \) Since both expressions yield the same result, \( * \) is indeed commutative. Next, let’s solve the equation \( x * (x + 2) = 49 \). Using the operation definition: \[ x * (x + 2) = x(x + 2) + x^2 + (x + 2)^2 \] \[ = x^2 + 2x + x^2 + x^2 + 4x + 4 \] \[ = 3x^2 + 6x + 4 \] Setting this equal to 49: \[ 3x^2 + 6x + 4 = 49 \] \[ 3x^2 + 6x - 45 = 0 \] Dividing through by 3: \[ x^2 + 2x - 15 = 0 \] Factoring: \[ (x + 5)(x - 3) = 0 \] Thus, \( x = -5 \) or \( x = 3 \). To wrap it up, the solutions for \( x \) are \( -5 \) and \( 3 \)!
