Pregunta
upstudy study bank question image url

\( 1 \leftarrow \) For the following function, find the intervals on which the function is increasing or decreasing.

Ask by Owen Park. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( f(x) = 1 \) is constant and does not increase or decrease on any interval.

Solución

To find the intervals on which the function is increasing or decreasing, we need to determine the intervals where the function is increasing and the intervals where the function is decreasing. Given function: \( f(x) = 1 \) Since the function is a constant function, it is neither increasing nor decreasing. The function remains constant at \( f(x) = 1 \) for all values of \( x \). Therefore, the function is neither increasing nor decreasing on any interval.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine where a function is increasing or decreasing, you first need to find its derivative. Once you have the derivative, set it equal to zero to find critical points. Analyze the sign of the derivative in the intervals defined by these critical points. If the derivative is positive, the function is increasing in that interval. If it is negative, the function is decreasing. Remember to check endpoints if you're working within a closed interval! In practice, consider a specific example function like \( f(x) = x^3 - 3x^2 + 4 \). By finding its derivative \( f'(x) = 3x^2 - 6x \) and solving \( f'(x) = 0 \), you can pinpoint critical points at \( x = 0 \) and \( x = 2 \). Test the intervals \( (-\infty, 0) \), \( (0, 2) \), and \( (2, \infty) \) to find the behavior of \( f(x) \). It's a fun exercise that highlights how calculus elegantly maps the landscape of functions!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad