Pregunta
upstudy study bank question image url

Graph the function \( f(x)=\frac{x+4}{2 x^{2}-5 x-3} \). What does the shape of the graph betweer the vertical asymptotes resemble? an upside-down letter \( U \) the letter \( U \) the graph of \( y=x^{3} \) the graph of \( y=-x^{3} \)

Ask by Estrada Peterson. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The graph between the vertical asymptotes resembles an upside-down letter U.

Solución

We begin with the function   f(x) = (x + 4) / (2x² – 5x – 3). Step 1. Factor the Denominator The denominator factors nicely:   2x² – 5x – 3 = 2(x – 3)(x + ½). So the function can be written as   f(x) = (x + 4) / [2(x – 3)(x + ½)]. Step 2. Identify the Vertical Asymptotes The factors in the denominator indicate vertical asymptotes where the function is undefined:   x – 3 = 0 ⟹ x = 3,   x + ½ = 0 ⟹ x = –½. Step 3. Analyze the Behavior Between the Vertical Asymptotes We are interested in the behavior of f(x) on the interval (–½, 3). Note the following: • As x approaches –½ from the right:  • (x + ½) → a very small positive number.  • (x – 3) is negative (since –½ – 3 = –3.5).  • The numerator (x + 4) is positive (for x near –½, x + 4 > 3.5). Thus, f(x) → negative infinity near x = –½⁺. • As x approaches 3 from the left:  • (x – 3) → a very small negative number.  • (x + ½) is positive (since 3 + ½ = 3.5).  • The numerator (x + 4) is positive (close to 7). Thus, f(x) → negative infinity near x = 3⁻. Since f(x) is continuous between –½ and 3 and tends to negative infinity at both endpoints, the function must rise from –∞ to a maximum at some point in between and then fall back to –∞. Step 4. Interpreting the Graph’s Shape This behavior creates a single “hump” in the interval, where the graph has a maximum point and then drops down steeply on both sides (approaching –∞ near the vertical asymptotes). Such a shape, with both ends descending toward –∞ and a peak in the middle, resembles an upside-down letter U. Thus, the graph of f(x) between the vertical asymptotes has the shape of an upside-down U. Answer: an upside-down letter U.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

This function has vertical asymptotes where the denominator is zero, specifically at the roots of \(2x^2 - 5x - 3 = 0\). Solving this quadratic gives us the locations of the asymptotes. Between these asymptotes, the shape of the graph generally reflects the behavior of rational functions. Here, you'll find that the graph tends to look like an upside-down letter \( U \) because as \( x \) moves away from the vertical asymptotes, the function approaches the horizontal asymptote, creating that distinctive shape. To confirm the resemblance to an upside-down \( U \), evaluate the limits approaching the asymptotes from both sides. You'll notice that as \( x \) nears each vertical asymptote, the function heads towards positive or negative infinity, outlining the overall curve between these asymptotes. Thus, the answer to your question is an upside-down letter \( U \)!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad