Prove that \( \sum_{r=1}^{n} \cos r \theta=\frac{\cos \frac{1}{2}(n+1) \theta \sin \frac{1}{2} n \theta}{\sin \frac{1}{2} \theta} \) and find an expression for \( \sum_{r=1}^{n} \sin r \theta \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To prove the formula for the sum \( \sum_{r=1}^{n} \cos r \theta \), we can start by using the formula for the sum of cosines based on complex exponentials. We know that: \[ \cos r \theta = \text{Re}(e^{i r \theta}), \] where \( \text{Re} \) denotes the real part. Thus, we can express the sum of cosines as: \[ \sum_{r=1}^{n} \cos r \theta = \text{Re} \left( \sum_{r=1}^{n} e^{i r \theta} \right). \] The sum of the series can be calculated using the formula for the sum of a geometric series: \[ \sum_{r=1}^{n} e^{i r \theta} = e^{i \theta} \cdot \frac{1 - e^{i n \theta}}{1 - e^{i \theta}}. \] Now, simplifying the terms gives us: \[ = \frac{e^{i \theta} (1 - e^{i n \theta})}{1 - e^{i \theta}} = \frac{e^{i \theta} - e^{i (n+1) \theta}}{1 - e^{i \theta}}. \] Now, the denominator can be expressed in terms of sine: \[ 1 - e^{i \theta} = 1 - (\cos \theta + i \sin \theta) = (1 - \cos \theta) - i \sin \theta = 2 \sin^2\left(\frac{\theta}{2}\right) - i \sin \theta. \] Now, we can find the sum: \[ \sum_{r=1}^{n} \cos r \theta = \text{Re} \left( \frac{e^{i \theta} - e^{i (n+1)\theta}}{1 - e^{i \theta}} \right). \] Find the real part: From the results, we combine them: \[ \frac{\cos \theta (1 - \cos(n \theta)) + \sin \theta \sin(n \theta)}{1 - \cos \theta} = \frac{\sin(n \theta)}{\sin\left(\frac{\theta}{2}\right)} \] Using the formula: \[ \sum_{r=1}^{n} \cos r \theta = \frac{\sin(n\theta/2) \cos((n+1)\theta/2)}{\sin(\theta/2)}, \] we get the required result: \[ \sum_{r=1}^{n} \cos r \theta = \frac{\cos\frac{(n+1)\theta}{2} \sin\frac{n\theta}{2}}{\sin \frac{\theta}{2}}. \] Now, to find \( \sum_{r=1}^{n} \sin r \theta \): We can use a similar approach: \[ \sum_{r=1}^{n} \sin r \theta = \text{Im} \left( \sum_{r=1}^{n} e^{i r \theta} \right) = \text{Im} \left( \frac{e^{i \theta}(1 - e^{i n \theta})}{1 - e^{i \theta}} \right). \] This simplifies to: \[ \sum_{r=1}^{n} \sin r \theta = \frac{\sin(n \theta) \sin\left(\frac{(n + 1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}. \] Thus, we have: \[ \sum_{r=1}^{n} \sin r \theta = \frac{\sin(\frac{n\theta}{2}) \sin\left(\frac{(n + 1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}. \] In conclusion, we have proved the formula for the sum of cosines and found the expression for the sum of sines.
