AW Score: \( 71.67 \%, 14.33 \) of 20 points A town currently has 4000 residents. The expected future population can be approximated by the function \( \mathrm{P}(\mathrm{x})=4000(1.413)^{0.1 \mathrm{x}} \) where x is the number of years in the future. Determine the expecte population of the town in 10 years and in 50 years. After 10 years, the population of the town will be (Round to the nearest whole number as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the expected population of the town in 10 years, we can substitute \( x = 10 \) into the function \( P(x) = 4000(1.413)^{0.1x} \). Calculating for \( x = 10 \): \[ P(10) = 4000(1.413)^{0.1 \cdot 10} = 4000(1.413)^{1} = 4000 \times 1.413 \approx 5652 \] Rounding to the nearest whole number, the expected population of the town in 10 years is approximately **5652 residents**. Now for 50 years, we substitute \( x = 50 \): \[ P(50) = 4000(1.413)^{0.1 \cdot 50} = 4000(1.413)^{5} \approx 4000 \times 4.810 \approx 19240 \] Thus, rounding to the nearest whole number, the expected population of the town in 50 years is approximately **19240 residents**.
