Pregunta
upstudy study bank question image url

4.2 Given the geometric series: \( 54+18+6+\cdots+54\left(\frac{1}{3}\right)^{n-1} \) 4.2.1 Show that the sum of the first \( n \) terms is given by \( 81-81\left(\frac{1}{3}\right)^{n} \). 4.2.2 Calculate the smallest value of \( n \) for which the Sum of the first \( n \) terms is greater than 80,99 . 4.2.3 What does \( \left(\frac{1}{3}\right)^{n} \) approach as \( n \rightarrow \infty \) ? 4.2.4 Determine the value of \( \sum_{k=1}^{\infty} 54\left(\frac{1}{3}\right)^{k-1} \), using QUESTION 4.2.1 and 4.2 .3 or in another way.

Ask by Cervantes Curry. in South Africa
Mar 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**4.2.1** The sum of the first \( n \) terms is \( S_n = 81 - 81\left(\frac{1}{3}\right)^n \). **4.2.2** The smallest \( n \) for which the sum exceeds 80.99 is \( n = 9 \). **4.2.3** As \( n \) approaches infinity, \( \left(\frac{1}{3}\right)^n \) approaches 0. **4.2.4** The sum of the infinite series is 81.

Solución

**4.2.1** The sum of the first \( n \) terms of a geometric series with first term \( a \) and common ratio \( r \) is given by \[ S_n = a\frac{1-r^n}{1-r}. \] Here, \( a = 54 \) and \( r = \frac{1}{3} \). Therefore, \[ S_n = 54\frac{1-\left(\frac{1}{3}\right)^n}{1-\frac{1}{3}} = 54\frac{1-\left(\frac{1}{3}\right)^n}{\frac{2}{3}}. \] Multiplying numerator and denominator by 3 gives \[ S_n = 54\cdot\frac{3\left[1-\left(\frac{1}{3}\right)^n\right]}{2} = 81\left[1-\left(\frac{1}{3}\right)^n\right]. \] Thus, \[ S_n = 81 - 81\left(\frac{1}{3}\right)^n. \] --- **4.2.2** We need to find the smallest \( n \) such that \[ S_n > 80.99. \] Using the expression from 4.2.1, \[ 81 - 81\left(\frac{1}{3}\right)^n > 80.99. \] Subtract \( 81 \) from both sides: \[ -81\left(\frac{1}{3}\right)^n > -0.01. \] Multiplying both sides by \(-1\) (which reverses the inequality): \[ 81\left(\frac{1}{3}\right)^n < 0.01. \] Divide both sides by 81: \[ \left(\frac{1}{3}\right)^n < \frac{0.01}{81} = \frac{1}{8100}. \] Taking the natural logarithm of both sides, \[ \ln\left(\left(\frac{1}{3}\right)^n\right) < \ln\left(\frac{1}{8100}\right). \] This simplifies to \[ n\ln\left(\frac{1}{3}\right) < \ln\left(\frac{1}{8100}\right). \] Since \(\ln\left(\frac{1}{3}\right) < 0\), dividing by it reverses the inequality: \[ n > \frac{\ln\left(\frac{1}{8100}\right)}{\ln\left(\frac{1}{3}\right)}. \] Notice that \[ \ln\left(\frac{1}{8100}\right) = -\ln(8100) \quad \text{and} \quad \ln\left(\frac{1}{3}\right) = -\ln(3). \] Thus, \[ n > \frac{-\ln(8100)}{-\ln(3)} = \frac{\ln(8100)}{\ln(3)}. \] We can write \(8100\) as \(81 \times 100\). Since \(81 = 3^4\), \[ \ln(8100) = \ln(81) + \ln(100) = 4\ln(3) + \ln(100). \] Therefore, \[ n > \frac{4\ln(3) + \ln(100)}{\ln(3)} = 4 + \frac{\ln(100)}{\ln(3)}. \] Now, using approximate values \(\ln(100) \approx 4.60517\) and \(\ln(3) \approx 1.09861\), \[ \frac{\ln(100)}{\ln(3)} \approx \frac{4.60517}{1.09861} \approx 4.191. \] Thus, \[ n > 4 + 4.191 \approx 8.191. \] Since \( n \) must be an integer, the smallest value is \( n = 9 \). --- **4.2.3** As \( n \rightarrow \infty \), \[ \left(\frac{1}{3}\right)^n \rightarrow 0. \] --- **4.2.4** We want to find \[ \sum_{k=1}^{\infty} 54\left(\frac{1}{3}\right)^{k-1}. \] For an infinite geometric series with \( |r| < 1 \), the sum is \[ S_{\infty} = \frac{a}{1-r}. \] Here, \( a = 54 \) and \( r = \frac{1}{3} \): \[ S_{\infty} = \frac{54}{1-\frac{1}{3}} = \frac{54}{\frac{2}{3}} = 54 \times \frac{3}{2} = 81. \] Alternatively, using the result from 4.2.1 and taking the limit as \( n\to\infty \): \[ \lim_{n\to\infty}\left[81-81\left(\frac{1}{3}\right)^n\right] = 81 - 81\cdot0 = 81. \] The final answers are: - 4.2.1: \( S_n = 81 - 81\left(\frac{1}{3}\right)^n \) - 4.2.2: The smallest \( n \) is \( 9 \). - 4.2.3: \( \left(\frac{1}{3}\right)^n \rightarrow 0 \) as \( n \rightarrow \infty \). - 4.2.4: \( \displaystyle \sum_{k=1}^{\infty} 54\left(\frac{1}{3}\right)^{k-1} = 81 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The formula for the sum of the first \( n \) terms of a geometric series is derived from the first term \( a \) and the common ratio \( r \). Here, \( a = 54 \) and \( r = \frac{1}{3} \). Applying the formula \( S_n = a \frac{1 - r^n}{1 - r} \) gives us \( S_n = 54 \frac{1 - \left(\frac{1}{3}\right)^n}{1 - \frac{1}{3}} = 54 \frac{1 - \left(\frac{1}{3}\right)^n}{\frac{2}{3}} = 81(1 - \left(\frac{1}{3}\right)^n) = 81 - 81\left(\frac{1}{3}\right)^n \). To find the smallest \( n \) such that \( S_n > 80.99 \), we can set up the inequality: \( 81 - 81\left(\frac{1}{3}\right)^n > 80.99 \). Simplifying gives us \( 81\left(\frac{1}{3}\right)^n < 0.01 \), or \( \left(\frac{1}{3}\right)^n < \frac{1}{8100} \). Taking the logarithm of both sides leads us to find \( n \). Solving this inequality yields that \( n \) must be at least 8. As \( n \rightarrow \infty \), the term \( \left(\frac{1}{3}\right)^n \) approaches zero. This is a property of geometric series where if \( |r| < 1 \), the terms head toward zero as the number of terms increases, showcasing the diminishing effect of the last term in the series. To find \( \sum_{k=1}^{\infty} 54\left(\frac{1}{3}\right)^{k-1} \), we can use the formula for the sum of an infinite geometric series: \( S = \frac{a}{1 - r} \). Here, \( a = 54 \) and \( r = \frac{1}{3} \), leading to \( S = \frac{54}{1 - \frac{1}{3}} = \frac{54}{\frac{2}{3}} = 54 \times \frac{3}{2} = 81 \). Thus, the infinite series converges to 81.

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad