6. If \( 20 \% \) of the Candidates faited, i. how many faited? ii. What is the least mark a Candidate should seane in ordor to pass. 2. The perimetor of a reaction plat of land whose length is \( (2 x+5) \mathrm{m} \) and width \( (x-10) \mathrm{m} \) is 80 m . Find the value of \( x \). solution
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find out how many candidates failed, you first need to know the total number of candidates. If, for example, there were 100 candidates, then \( 20\% \) failed means \( 20\% \times 100 = 20 \) candidates failed. As for the least mark needed to pass, this typically depends on the total possible marks. For a passing score of, say, 40 out of 100, then a candidate would need at least 40 marks to pass. Now, for the perimeter of the rectangular plot of land, you use the formula for the perimeter \( P = 2(\text{length} + \text{width}) \). Plugging in the given dimensions, we have \( 80 = 2((2x + 5) + (x - 10)) \). Simplifying this gives \( 80 = 2(3x - 5) \) or \( 40 = 3x - 5 \). Re-arranging gives \( 3x = 45 \) or \( x = 15 \). So, the value of \( x \) is \( 15 \).
