Pregunta
upstudy study bank question image url

Use transformations of the standard cubic function, \( f(x)=x^{3} \), to graph the function \( h(x)=-(x-4)^{3} \). Use the graphing tool to graph the function. Click to enlarge graph

Ask by Valdez Moreno. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph \( h(x) = -(x-4)^{3} \), start with the standard cubic function \( f(x) = x^{3} \), shift it 4 units to the right, and then reflect it across the x-axis. Plot key points like \( (3, 1) \), \( (4, 0) \), \( (5, -1) \), and \( (6, -8) \) to sketch the transformed graph.

Solución

To graph the function \( h(x) = -(x-4)^{3} \) using transformations of the standard cubic function \( f(x) = x^{3} \), we can break down the transformations step by step: 1. **Start with the standard cubic function**: \[ f(x) = x^{3} \] 2. **Horizontal Shift**: The term \( (x-4) \) indicates a horizontal shift to the right by 4 units. This transforms the function to: \[ g(x) = (x-4)^{3} \] 3. **Vertical Reflection**: The negative sign in front of the function indicates a reflection across the x-axis. This transforms the function to: \[ h(x) = -(x-4)^{3} \] ### Summary of Transformations: - Start with \( f(x) = x^{3} \). - Shift right by 4 units to get \( g(x) = (x-4)^{3} \). - Reflect across the x-axis to get \( h(x) = -(x-4)^{3} \). ### Key Points to Plot: - The original cubic function \( f(x) \) has a point at \( (0, 0) \). - After shifting right by 4, the point becomes \( (4, 0) \). - Reflecting this point across the x-axis gives \( (4, 0) \) (it remains the same since it is on the x-axis). - As \( x \) approaches \( \infty \), \( h(x) \) approaches \( -\infty \), and as \( x \) approaches \( -\infty \), \( h(x) \) approaches \( \infty \). ### Additional Points: - For \( x = 3 \): \[ h(3) = -(3-4)^{3} = -(-1)^{3} = 1 \] - For \( x = 5 \): \[ h(5) = -(5-4)^{3} = -1^{3} = -1 \] - For \( x = 6 \): \[ h(6) = -(6-4)^{3} = -2^{3} = -8 \] ### Points to Plot: - \( (3, 1) \) - \( (4, 0) \) - \( (5, -1) \) - \( (6, -8) \) You can use these points and the transformations described to sketch the graph of \( h(x) = -(x-4)^{3} \). If you have access to graphing software or a graphing calculator, you can input the function directly to visualize it.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When transforming the standard cubic function \( f(x) = x^3 \) to graph \( h(x) = -(x-4)^3 \), you start with a rightward shift. The \( (x-4) \) indicates that the graph moves 4 units to the right. Next, the negative sign reflects the graph across the x-axis, flipping it upside down. So instead of rising steeply as \( x \) increases, your graph will dive downwards instead! Once you have the transformed function, you can plot a few critical points to help visualize its shape. For instance, plugging in points like \( x = 4 \) gives \( h(4) = 0 \), and as you check values like \( x = 3 \) and \( x = 5 \), you'll see the cubic nature of the function remains, just altered by your transformations. Happy graphing!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad