The price of a wardrobe is increased by \( 57 \% \) and is now \( £ 447.4 \). Find the original price.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the original price before the increase, we can set up the equation based on the percentage increase. If we let the original price be \( x \), an increase of \( 57\% \) would mean the new price is \( x + 0.57x = 1.57x \). We know that this new price equals \( £447.4 \). Therefore, we can write the equation: \[ 1.57x = 447.4 \] To find \( x \), divide both sides by \( 1.57 \): \[ x = \frac{447.4}{1.57} \approx 285.6 \] So, the original price of the wardrobe was approximately \( £285.60 \).
