Let \( P(x) \) be the function \( \frac{x}{x+1}-1 \). Find the following: \( P(7)=\square \) \( P(-4)= \) \( P\left(\frac{1}{10}\right)= \) \( P\left(-\frac{1}{3}\right)= \) In each box, enter your answer as an integer or reduced fraction. Enter DNE for Does Not Exi Infinity.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To evaluate the function \( P(x) = \frac{x}{x+1} - 1 \), let's simplify it first: \[ P(x) = \frac{x}{x+1} - 1 = \frac{x - (x + 1)}{x + 1} = \frac{x - x - 1}{x + 1} = \frac{-1}{x + 1} \] Now, we'll calculate \( P(7) \), \( P(-4) \), \( P\left(\frac{1}{10}\right) \), and \( P\left(-\frac{1}{3}\right) \): 1. **For \( P(7) \)**: \[ P(7) = \frac{-1}{7 + 1} = \frac{-1}{8} \] 2. **For \( P(-4) \)**: \[ P(-4) = \frac{-1}{-4 + 1} = \frac{-1}{-3} = \frac{1}{3} \] 3. **For \( P\left(\frac{1}{10}\right) \)**: \[ P\left(\frac{1}{10}\right) = \frac{-1}{\frac{1}{10} + 1} = \frac{-1}{\frac{1}{10} + \frac{10}{10}} = \frac{-1}{\frac{11}{10}} = -\frac{10}{11} \] 4. **For \( P\left(-\frac{1}{3}\right) \)**: \[ P\left(-\frac{1}{3}\right) = \frac{-1}{-\frac{1}{3} + 1} = \frac{-1}{-\frac{1}{3} + \frac{3}{3}} = \frac{-1}{\frac{2}{3}} = -\frac{3}{2} \] So, the final values are: - \( P(7) = -\frac{1}{8} \) - \( P(-4) = \frac{1}{3} \) - \( P\left(\frac{1}{10}\right) = -\frac{10}{11} \) - \( P\left(-\frac{1}{3}\right) = -\frac{3}{2} \) To summarize, the answers are: - \( P(7) = -\frac{1}{8} \) - \( P(-4) = \frac{1}{3} \) - \( P\left(\frac{1}{10}\right) = -\frac{10}{11} \) - \( P\left(-\frac{1}{3}\right) = -\frac{3}{2} \)
