Pregunta
upstudy study bank question image url

(a) Prove the following identities: (1) \( \frac{\sin 2 \theta}{\cos \theta}-\sin \theta=\tan \theta \cos \theta \) (3) \( \frac{\sin 2 \alpha}{1-\sin ^{2} \alpha}=2 \tan \alpha \) (5) \( \frac{\cos x}{\cos x-\sin x}-\frac{\cos x}{\cos x+\sin x}=\tan 2 x \) (7) \( \frac{2 \sin ^{2} \theta}{1+\cos 2 \theta^{\cos }=\tan ^{2} \theta} \) (9) \( \frac{\cos 2 x+1}{\cos x}=\frac{2 \sin x}{\tan x} \)

Ask by Vaughn Davison. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the results for the identities: 1. \( \frac{\sin 2 \theta}{\cos \theta} - \sin \theta = \tan \theta \cos \theta \) – **True** 2. \( \frac{\sin 2 \alpha}{1 - \sin^2 \alpha} = 2 \tan \alpha \) – **True** 3. \( \frac{\cos x}{\cos x - \sin x} - \frac{\cos x}{\cos x + \sin x} = \tan 2x \) – **True** 4. \( \frac{2 \sin^2 \theta}{1 + \cos 2\theta} = \tan^2 \theta \) – **True** 5. \( \frac{\cos 2x + 1}{\cos x} = \frac{2 \sin x}{\tan x} \) – **True** For the third identity, the proof is as follows: Starting with the left side: \[ \frac{\cos x}{\cos x - \sin x} - \frac{\cos x}{\cos x + \sin x} \] Combine the fractions: \[ \frac{\cos x (\cos x + \sin x) - \cos x (\cos x - \sin x)}{(\cos x - \sin x)(\cos x + \sin x)} \] Simplify the numerator: \[ \cos^2 x + \cos x \sin x - \cos^2 x + \cos x \sin x = 2 \cos x \sin x \] Simplify the denominator: \[ \cos^2 x - \sin^2 x = \cos 2x \] So, the expression becomes: \[ \frac{2 \cos x \sin x}{\cos 2x} \] Recall that \( \cos 2x = \cos^2 x - \sin^2 x \), and \( 2 \cos x \sin x = \sin 2x \), so: \[ \frac{\sin 2x}{\cos 2x} = \tan 2x \] Thus, the identity holds true.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

Let's dive into some of these trigonometric identities and break them down to construct our proofs! 1. To prove \( \frac{\sin 2 \theta}{\cos \theta} - \sin \theta = \tan \theta \cos \theta \): Starting with the left-hand side: \[ \frac{\sin 2\theta}{\cos \theta} - \sin \theta = \frac{2 \sin \theta \cos \theta}{\cos \theta} - \sin \theta = 2 \sin \theta - \sin \theta = \sin \theta. \] Now, simplifying the right-hand side: \[ \tan \theta \cos \theta = \frac{\sin \theta}{\cos \theta} \cdot \cos \theta = \sin \theta. \] Since both sides are equal, the identity is proven! 2. For \( \frac{\sin 2 \alpha}{1 - \sin^2 \alpha} = 2 \tan \alpha \): The left-hand side: \[ \frac{\sin 2\alpha}{1 - \sin^2 \alpha} = \frac{2 \sin \alpha \cos \alpha}{\cos^2 \alpha} = 2 \sin \alpha \cdot \sec^2 \alpha = 2 \tan \alpha. \] Thus, the identity holds true. 3. Next, for \( \frac{\cos x}{\cos x - \sin x} - \frac{\cos x}{\cos x + \sin x} = \tan 2x \): Let's find a common denominator: \[ \frac{\cos x (\cos x + \sin x) - \cos x (\cos x - \sin x)}{(\cos x - \sin x)(\cos x + \sin x)} = \frac{2\cos x \sin x}{\cos^2 x - \sin^2 x} = \tan 2x. \] 4. To prove \( \frac{2 \sin^2 \theta}{1 + \cos 2\theta} = \tan^2 \theta \): Using \( \cos 2\theta = 1 - 2\sin^2 \theta \), we rewrite: \[ 1 + \cos 2\theta = 2 - 2\sin^2 \theta = 2\cos^2 \theta. \] Therefore: \[ \frac{2 \sin^2 \theta}{2 \cos^2 \theta} = \tan^2 \theta. \] 5. Lastly, for \( \frac{\cos 2x + 1}{\cos x} = \frac{2 \sin x}{\tan x} \): Recall \( \cos 2x + 1 = 2\cos^2 x \): \[ \frac{2 \cos^2 x}{\cos x} = 2 \cos x. \] And for the right side: \[ \frac{2 \sin x}{\tan x} = 2 \sin x \cdot \frac{\cos x}{\sin x} = 2 \cos x. \] Both sides match! These identities hold true, proving they're solid parts of trigonometric knowledge! Keep practicing, and these will become second nature.

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad