Pregunta
upstudy study bank question image url

AD\# \( \qquad \) Equal Values Method Find the point of intersection (P.O.I.) for each pair of lines by using the Equal Values Method. 1. \( y=x+2 \) \( y=2 x-1 \) \( (3,5) \) 3. \( y=11-2 x \) \( y=x+2 \) 2. \( \quad y=3 x+5 \) \[ y=4 x+8 \] 4. \[ \begin{array}{l} y=3-2 x \\ y=1+2 x \end{array} \] 6. \( y=-\frac{2}{3} x+4 \) \[ y=\frac{1}{3} x-2 \] \( \frac{\left(\frac{1}{2}, 2\right)}{y=-\frac{2}{3} x+4} \) \( y=3 x-4 \) \( y=.5 x+6 \) \( (0,512) \) \( y=4.5-x \) \( y=-2 x+6 \) \[ \begin{array}{l} y=4.5-x \\ y=-2 x+6 \end{array} \] \[ \begin{array}{l} y=4 x \\ y=x+1 \end{array} \]

Ask by Mathis Lyons. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Points of Intersection:** 1. \( (3, 5) \) 2. \( (3, 5) \) 3. \( (-3, -4) \) 4. \( \left(\frac{1}{2}, 2\right) \) 5. \( (6, 0) \) 6. \( (1.5, 3) \) 7. \( \left(\frac{1}{3}, \frac{4}{3}\right) \)

Solución

To find the points of intersection (P.O.I.) for each pair of lines using the Equal Values Method, we will set the equations equal to each other and solve for the variable. Let's go through each pair step by step. ### 1. Pair: \( y = x + 2 \) and \( y = 2x - 1 \) Set the equations equal to each other: \[ x + 2 = 2x - 1 \] Now, solve for \( x \): \[ 2 + 1 = 2x - x \\ 3 = x \] Now substitute \( x = 3 \) back into one of the original equations to find \( y \): \[ y = 3 + 2 = 5 \] **Point of Intersection:** \( (3, 5) \) ### 2. Pair: \( y = 11 - 2x \) and \( y = x + 2 \) Set the equations equal to each other: \[ 11 - 2x = x + 2 \] Now, solve for \( x \): \[ 11 - 2 = x + 2x \\ 9 = 3x \\ x = 3 \] Now substitute \( x = 3 \) back into one of the original equations to find \( y \): \[ y = 3 + 2 = 5 \] **Point of Intersection:** \( (3, 5) \) ### 3. Pair: \( y = 3x + 5 \) and \( y = 4x + 8 \) Set the equations equal to each other: \[ 3x + 5 = 4x + 8 \] Now, solve for \( x \): \[ 5 - 8 = 4x - 3x \\ -3 = x \] Now substitute \( x = -3 \) back into one of the original equations to find \( y \): \[ y = 3(-3) + 5 = -9 + 5 = -4 \] **Point of Intersection:** \( (-3, -4) \) ### 4. Pair: \( y = 3 - 2x \) and \( y = 1 + 2x \) Set the equations equal to each other: \[ 3 - 2x = 1 + 2x \] Now, solve for \( x \): \[ 3 - 1 = 2x + 2x \\ 2 = 4x \\ x = \frac{1}{2} \] Now substitute \( x = \frac{1}{2} \) back into one of the original equations to find \( y \): \[ y = 3 - 2\left(\frac{1}{2}\right) = 3 - 1 = 2 \] **Point of Intersection:** \( \left(\frac{1}{2}, 2\right) \) ### 5. Pair: \( y = -\frac{2}{3}x + 4 \) and \( y = \frac{1}{3}x - 2 \) Set the equations equal to each other: \[ -\frac{2}{3}x + 4 = \frac{1}{3}x - 2 \] Now, solve for \( x \): \[ 4 + 2 = \frac{1}{3}x + \frac{2}{3}x \\ 6 = 1x \\ x = 6 \] Now substitute \( x = 6 \) back into one of the original equations to find \( y \): \[ y = -\frac{2}{3}(6) + 4 = -4 + 4 = 0 \] **Point of Intersection:** \( (6, 0) \) ### 6. Pair: \( y = 4.5 - x \) and \( y = -2x + 6 \) Set the equations equal to each other: \[ 4.5 - x = -2x + 6 \] Now, solve for \( x \): \[ 4.5 - 6 = -2x + x \\ -1.5 = -x \\ x = 1.5 \] Now substitute \( x = 1.5 \) back into one of the original equations to find \( y \): \[ y = 4.5 - 1.5 = 3 \] **Point of Intersection:** \( (1.5, 3) \) ### 7. Pair: \( y = 4x \) and \( y = x + 1 \) Set the equations equal to each other: \[ 4x = x + 1 \] Now, solve for \( x \): \[ 4x - x = 1 \\ 3x = 1 \\ x = \frac{1}{3} \] Now substitute \( x = \frac{1}{3} \) back into one of the original equations to find \( y \): \[ y = 4\left(\frac{1}{3}\right) = \frac{4}{3} \] **Point of Intersection:** \( \left(\frac{1}{3}, \frac{4}{3}\right) \) ### Summary of Points of Intersection: 1. \( (3, 5) \) 2. \( (3, 5) \) 3. \( (-3, -4) \) 4. \( \left(\frac{1}{2}, 2\right) \) 5. \( (6, 0) \) 6. \( (1.5, 3) \) 7. \( \left(\frac{1}{3}, \frac{4}{3}\right) \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the point of intersection for the given pairs of lines using the Equal Values Method, you set both equations equal to each other and solve for \(x\). 1. For \(y = x + 2\) and \(y = 2x - 1\): Set \(x + 2 = 2x - 1\). Distributing and rearranging gives you \(x = 3\), then substitute to find \(y\) leading to the solution \((3, 5)\). 2. For \(y = 3x + 5\) and \(y = 4x + 8\): Equate \(3x + 5 = 4x + 8\). Solving this yields \(x = -3\). Plug this back to find \(y\) to get the point of intersection as \((-3, -4)\). Now, let’s dive a bit deeper into some context. In the world of mathematics, the Equal Values Method is a powerful strategy that not only helps find intersections but also illustrates the beauty of linear equations. It highlights how lines can interact in a plane, reflecting the balance between change and constant value—it's like discovering harmony in chaos! On the practical side, spotting intersections of lines isn’t just for math homework; it's crucial in fields like economics for determining equilibrium points or in physics for finding where forces balance. It can be used in engineering when designing systems where various variables need to equalize—a definite real-world application demonstrating the utility of this method beyond academia!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad