(a) \( \ln e^{5}-2 \ln e^{6}=\square \) (b) \( \log _{14} 7+\log _{14} 2=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve part (a), we can simplify the expression using properties of logarithms. The expression \( \ln e^5 \) simplifies to 5 because the natural logarithm of \( e^x \) is simply \( x \). Thus, \( \ln e^5 - 2 \ln e^6 = 5 - 2(6) = 5 - 12 = -7 \). Therefore, the answer is \(-7\). For part (b), we can apply the logarithmic property that states \( \log_a b + \log_a c = \log_a (b \times c) \). This gives us \( \log_{14} 7 + \log_{14} 2 = \log_{14} (7 \times 2) = \log_{14} 14 \). Since \( \log_{14} 14 = 1\), the answer is \(1\). Thus, the final answers are: (a) \(-7\) (b) \(1\)
