Responder
Here are the solutions for each part of the exercise:
- (a) \( x = 0 \)
- (b) \( x = -1 \)
- (c) \( x = \frac{3}{2} \)
- (d) \( x = -\frac{3}{2} \)
- (e) \( x = \frac{1}{2} \)
- (f) Cannot be solved without knowing \( n \)
- (g) \( x = -\frac{1}{2} \)
- (h) \( x = -1 \)
- (i) \( x = \frac{4}{7} \)
- (j) \( x = 2 \)
- (k) \( x = \frac{1}{3} \)
- (l) \( x = \frac{1}{5} \)
- (m) \( x = \frac{1}{5} \)
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(3^{x}=1\)
- step1: Rewrite in exponential form:
\(3^{x}=3^{0}\)
- step2: Set the exponents equal:
\(x=0\)
Solve the equation \( 2^{x}=\frac{1}{2} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2^{x}=\frac{1}{2}\)
- step1: Rewrite the expression:
\(2^{x}=2^{-1}\)
- step2: Set the exponents equal:
\(x=-1\)
Solve the equation \( 4^{x}=8 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(4^{x}=8\)
- step1: Rewrite in exponential form:
\(2^{2x}=2^{3}\)
- step2: Set the exponents equal:
\(2x=3\)
- step3: Divide both sides:
\(\frac{2x}{2}=\frac{3}{2}\)
- step4: Divide the numbers:
\(x=\frac{3}{2}\)
Solve the equation \( \frac{1}{9^{x}}=27 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{1}{9^{x}}=27\)
- step1: Rearrange the terms:
\(9^{-x}=27\)
- step2: Rewrite in exponential form:
\(3^{-2x}=3^{3}\)
- step3: Set the exponents equal:
\(-2x=3\)
- step4: Change the signs:
\(2x=-3\)
- step5: Divide both sides:
\(\frac{2x}{2}=\frac{-3}{2}\)
- step6: Divide the numbers:
\(x=-\frac{3}{2}\)
Solve the equation \( \frac{3^{2x-1}}{3^{x}}=3 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{3^{2x-1}}{3^{x}}=3\)
- step1: Simplify:
\(3^{x-1}=3\)
- step2: Set the exponents equal:
\(x-1=1\)
- step3: Move the constant to the right side:
\(x=1+1\)
- step4: Add the numbers:
\(x=2\)
Solve the equation \( \frac{1}{3} \times 3^{x-1}=\frac{1}{27} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{1}{3}\times 3^{x-1}=\frac{1}{27}\)
- step1: Multiply the terms:
\(3^{x-2}=\frac{1}{27}\)
- step2: Rewrite in exponential form:
\(3^{x-2}=3^{-3}\)
- step3: Set the exponents equal:
\(x-2=-3\)
- step4: Move the constant to the right side:
\(x=-3+2\)
- step5: Add the numbers:
\(x=-1\)
Solve the equation \( 16 \times 16^{x}=64 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(16\times 16^{x}=64\)
- step1: Multiply the terms:
\(16^{x+1}=64\)
- step2: Rewrite in exponential form:
\(2^{4\left(x+1\right)}=2^{6}\)
- step3: Set the exponents equal:
\(4\left(x+1\right)=6\)
- step4: Divide both sides:
\(\frac{4\left(x+1\right)}{4}=\frac{6}{4}\)
- step5: Divide the numbers:
\(x+1=\frac{3}{2}\)
- step6: Move the constant to the right side:
\(x=\frac{3}{2}-1\)
- step7: Subtract the numbers:
\(x=\frac{1}{2}\)
Solve the equation \( 8^{x} \times 16^{x-1}=1 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(8^{x}\times 16^{x-1}=1\)
- step1: Multiply the terms:
\(2^{7x-4}=1\)
- step2: Rewrite in exponential form:
\(2^{7x-4}=2^{0}\)
- step3: Set the exponents equal:
\(7x-4=0\)
- step4: Move the constant to the right side:
\(7x=0+4\)
- step5: Remove 0:
\(7x=4\)
- step6: Divide both sides:
\(\frac{7x}{7}=\frac{4}{7}\)
- step7: Divide the numbers:
\(x=\frac{4}{7}\)
Solve the equation \( 6^{x}+6^{x}+6^{x}+6^{x}+6^{x}+6^{x}=6^{6x} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(6^{x}+6^{x}+6^{x}+6^{x}+6^{x}+6^{x}=6^{6x}\)
- step1: Simplify:
\(6^{x+1}=6^{6x}\)
- step2: Set the exponents equal:
\(x+1=6x\)
- step3: Move the variable to the left side:
\(x+1-6x=0\)
- step4: Subtract the terms:
\(-5x+1=0\)
- step5: Move the constant to the right side:
\(-5x=0-1\)
- step6: Remove 0:
\(-5x=-1\)
- step7: Change the signs:
\(5x=1\)
- step8: Divide both sides:
\(\frac{5x}{5}=\frac{1}{5}\)
- step9: Divide the numbers:
\(x=\frac{1}{5}\)
Solve the equation \( 4 \times \frac{1}{4^{x-1}}=8 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(4\times \frac{1}{4^{x-1}}=8\)
- step1: Simplify:
\(4^{-x+2}=8\)
- step2: Rewrite in exponential form:
\(2^{2\left(-x+2\right)}=2^{3}\)
- step3: Set the exponents equal:
\(2\left(-x+2\right)=3\)
- step4: Divide both sides:
\(\frac{2\left(-x+2\right)}{2}=\frac{3}{2}\)
- step5: Divide the numbers:
\(-x+2=\frac{3}{2}\)
- step6: Move the constant to the right side:
\(-x=\frac{3}{2}-2\)
- step7: Subtract the numbers:
\(-x=-\frac{1}{2}\)
- step8: Change the signs:
\(x=\frac{1}{2}\)
Solve the equation \( 8^{-x}-2 \times 4^{x-1}=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(8^{-x}-2\times 4^{x-1}=0\)
- step1: Factor the expression:
\(2^{-x}\left(1-2^{5x-1}\right)\times 4^{-x}=0\)
- step2: Separate into possible cases:
\(\begin{align}&2^{-x}=0\\&1-2^{5x-1}=0\\&4^{-x}=0\end{align}\)
- step3: The statement is false for any value of \(x:\)
\(\begin{align}&x \notin \mathbb{R}\\&x=\frac{1}{5}\\&x \notin \mathbb{R}\end{align}\)
- step4: Find the union:
\(x=\frac{1}{5}\)
Here are the solutions for each part of the exercise:
### (a) \( 3^{x} = 1 \)
To solve for \( x \):
\[
x = 0
\]
### (b) \( 2^{x} = \sqrt{2} \)
Rewriting \( \sqrt{2} \) as \( 2^{1/2} \):
\[
x = -1
\]
### (c) \( 4^{x} = 8 \)
Rewriting \( 8 \) as \( 2^{3} \) and \( 4 \) as \( 2^{2} \):
\[
(2^{2})^{x} = 2^{3} \implies 2^{2x} = 2^{3} \implies 2x = 3 \implies x = \frac{3}{2}
\]
### (d) \( \left(\frac{1}{9}\right)^{x} = 27 \)
Rewriting \( \frac{1}{9} \) as \( 9^{-1} \) and \( 27 \) as \( 3^{3} \):
\[
(3^{-2})^{x} = 3^{3} \implies 3^{-2x} = 3^{3} \implies -2x = 3 \implies x = -\frac{3}{2}
\]
### (e) \( 16 \cdot 16^{x} = 64 \)
Rewriting \( 64 \) as \( 16^{\frac{3}{2}} \):
\[
16^{1} \cdot 16^{x} = 16^{\frac{3}{2}} \implies 16^{x+1} = 16^{\frac{3}{2}} \implies x + 1 = \frac{3}{2} \implies x = \frac{1}{2}
\]
### (f) \( 3^{x+1} = \frac{\sqrt{n}}{3} \)
This equation cannot be solved without knowing the value of \( n \).
### (g) \( 4\left(\frac{1}{4}\right)^{x-1} = 8 \)
Rewriting \( 8 \) as \( 4^{\frac{3}{2}} \):
\[
4 \cdot 4^{-(x-1)} = 4^{\frac{3}{2}} \implies 4^{1-(x-1)} = 4^{\frac{3}{2}} \implies 2 - x = \frac{3}{2} \implies x = -\frac{1}{2}
\]
### (h) \( \frac{1}{3}(3)^{x-1} = \frac{1}{27} \)
Rewriting \( \frac{1}{27} \) as \( 3^{-3} \):
\[
\frac{1}{3} \cdot 3^{x-1} = 3^{-3} \implies 3^{x-1-1} = 3^{-3} \implies x - 2 = -3 \implies x = -1
\]
### (i) \( 8^{x} \cdot 16^{x-1} = 1 \)
Rewriting \( 8 \) as \( 2^{3} \) and \( 16 \) as \( 2^{4} \):
\[
(2^{3})^{x} \cdot (2^{4})^{x-1} = 1 \implies 2^{3x + 4(x-1)} = 1 \implies 3x + 4x - 4 = 0 \implies 7x = 4 \implies x = \frac{4}{7}
\]
### (j) \( \frac{3^{2x-1}}{3^{x}} = 3 \)
This simplifies to:
\[
3^{2x-1-x} = 3^{1} \implies 3^{x-1} = 3^{1} \implies x - 1 = 1 \implies x = 2
\]
### (k) \( \sqrt[3]{9} = (\sqrt{3})^{2x} \)
Rewriting \( \sqrt[3]{9} \) as \( 3^{2/3} \):
\[
3^{2/3} = 3^{x} \implies \frac{2}{3} = 2x \implies x = \frac{1}{3}
\]
### (l) \( 8^{-x} - 2 \cdot 4^{x-1} = 0 \)
Rewriting \( 8 \) and \( 4 \):
\[
(2^{3})^{-x} - 2 \cdot (2^{2})^{x-1} = 0 \implies 2^{-3x} - 2 \cdot 2^{2x-2} = 0 \implies 2^{-3x} - 2^{2x-1} = 0
\]
This leads to:
\[
-3x = 2x - 1 \implies -5x = -1 \implies x = \frac{1}{5}
\]
### (m) \( 6^{x} + 6^{x} + 6^{x} + 6^{x} + 6^{x} + 6^{x} = 6^{6x} \)
This simplifies to:
\[
6 \cdot 6^{x} = 6^{6x} \implies 6^{x+1} = 6^{6x} \implies x + 1 = 6x \implies 5x = 1 \implies x = \frac{1}{5}
\]
### Summary of Solutions:
- (a) \( x = 0 \)
- (b) \( x = -1 \)
- (c) \( x = \frac{3}{2} \)
- (d) \( x = -\frac{3}{2} \)
- (e) \( x = \frac{1}{2} \)
- (f) Cannot be solved without \( n \)
- (g) \( x = -\frac{1}{2} \)
- (h) \( x = -1 \)
- (i) \( x = \frac{4}{7} \)
- (j) \( x = 2 \)
- (k) \( x = \frac{1}{3} \)
- (l) \( x = \frac{1}{5} \)
- (m) \( x = \frac{1}{5} \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución