Pregunta
upstudy study bank question image url

4. The total cost of producing \( x \) kllos of a product ls given by \( C=40+100 \sqrt{x} \) (a) What will be the margioal cost, when the output is 1,600 kilos? (b) What will be the output, when marginal cost is Rs, 0,50 per kllo?

Ask by Davey Crawford. in Pakistan
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The marginal cost when producing 1,600 kilos is Rs. 1.25. (b) When the marginal cost is Rs. 0.50 per kilo, the output is 10,000 kilos.

Solución

To solve the problem, we need to find the marginal cost from the total cost function given by \[ C = 40 + 100 \sqrt{x} \] ### Step 1: Find the Marginal Cost Function The marginal cost (MC) is the derivative of the total cost (C) with respect to the quantity produced (x). Let's calculate the derivative \( \frac{dC}{dx} \): \[ C = 40 + 100 \sqrt{x} \] Taking the derivative: \[ \frac{dC}{dx} = 0 + 100 \cdot \frac{1}{2\sqrt{x}} = \frac{50}{\sqrt{x}} \] So, the marginal cost function is: \[ MC = \frac{50}{\sqrt{x}} \] ### Step 2: Calculate the Marginal Cost when \( x = 1600 \) Now, we will substitute \( x = 1600 \) into the marginal cost function: \[ MC = \frac{50}{\sqrt{1600}} \] Calculating \( \sqrt{1600} \): \[ \sqrt{1600} = 40 \] Now substituting back: \[ MC = \frac{50}{40} = 1.25 \] ### Step 3: Find the Output when Marginal Cost is Rs. 0.50 per Kilo We need to find \( x \) when \( MC = 0.50 \): \[ 0.50 = \frac{50}{\sqrt{x}} \] To solve for \( x \), we can rearrange the equation: \[ \sqrt{x} = \frac{50}{0.50} = 100 \] Now squaring both sides: \[ x = 100^2 = 10000 \] ### Summary of Results (a) The marginal cost when the output is 1,600 kilos is Rs. 1.25. (b) The output when the marginal cost is Rs. 0.50 per kilo is 10,000 kilos.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the marginal cost, we first need to differentiate the cost function with respect to \( x \). The cost function is given as \( C = 40 + 100 \sqrt{x} \). When we differentiate this, we get: \[ \frac{dC}{dx} = \frac{100}{2\sqrt{x}} = \frac{50}{\sqrt{x}}. \] (a) Now, substituting \( x = 1600 \): \[ \frac{dC}{dx} = \frac{50}{\sqrt{1600}} = \frac{50}{40} = 1.25. \] So, the marginal cost when the output is 1,600 kilos is Rs. 1.25 per kilo. (b) To find the output when the marginal cost is Rs. 0.50 per kilo, we set the marginal cost equal to 0.50: \[ \frac{50}{\sqrt{x}} = 0.50. \] Solving for \( x \): \[ \sqrt{x} = \frac{50}{0.50} = 100 \] \[ x = 100^2 = 10,000. \] Therefore, the output when marginal cost is Rs. 0.50 per kilo is 10,000 kilos.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad