4. The total cost of producing \( x \) kllos of a product ls given by \( C=40+100 \sqrt{x} \) (a) What will be the margioal cost, when the output is 1,600 kilos? (b) What will be the output, when marginal cost is Rs, 0,50 per kllo?
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the marginal cost, we first need to differentiate the cost function with respect to \( x \). The cost function is given as \( C = 40 + 100 \sqrt{x} \). When we differentiate this, we get: \[ \frac{dC}{dx} = \frac{100}{2\sqrt{x}} = \frac{50}{\sqrt{x}}. \] (a) Now, substituting \( x = 1600 \): \[ \frac{dC}{dx} = \frac{50}{\sqrt{1600}} = \frac{50}{40} = 1.25. \] So, the marginal cost when the output is 1,600 kilos is Rs. 1.25 per kilo. (b) To find the output when the marginal cost is Rs. 0.50 per kilo, we set the marginal cost equal to 0.50: \[ \frac{50}{\sqrt{x}} = 0.50. \] Solving for \( x \): \[ \sqrt{x} = \frac{50}{0.50} = 100 \] \[ x = 100^2 = 10,000. \] Therefore, the output when marginal cost is Rs. 0.50 per kilo is 10,000 kilos.
