Pregunta
upstudy study bank question image url

Submit Al Question 9. A batsman hits a cricket ball high into the air. It flies into the crowd following a parabolic curve. A mathematician in the crowd observes that the ball was 1 m above the ground as it was hit, 10 m above the ground as it passed over the boundary fence 80 m away and that it was caught 1 m above the ground 10 m into the crowd. She uses this information to calculate that the highest point, in metres, the ball reached as it flew through the air was closest to A. 070

Ask by Robbins Fernandez. in Australia
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The highest point the ball reached was approximately 23.78 meters.

Solución

To find the highest point the ball reached, we can model the trajectory of the ball as a parabolic function. We will use the given points to determine the equation of the parabola. ### Known Conditions: 1. The ball was 1 m above the ground when hit (point A). 2. The ball was 10 m above the ground when it passed over the boundary fence 80 m away (point B). 3. The ball was caught 1 m above the ground 10 m into the crowd (point C). ### Points: - Point A: \((0, 1)\) - Point B: \((80, 10)\) - Point C: \((90, 1)\) ### Step 1: Formulate the Parabola The general form of a parabolic equation is: \[ y = ax^2 + bx + c \] We will use the three points to create a system of equations. ### Step 2: Set Up the Equations Using the points: 1. For point A \((0, 1)\): \[ c = 1 \] 2. For point B \((80, 10)\): \[ 10 = 80^2 a + 80b + 1 \] Simplifying gives: \[ 10 = 6400a + 80b + 1 \implies 6400a + 80b = 9 \quad \text{(Equation 1)} \] 3. For point C \((90, 1)\): \[ 1 = 90^2 a + 90b + 1 \] Simplifying gives: \[ 1 = 8100a + 90b + 1 \implies 8100a + 90b = 0 \quad \text{(Equation 2)} \] ### Step 3: Solve the System of Equations We will solve the system of equations formed by Equation 1 and Equation 2: 1. \(6400a + 80b = 9\) 2. \(8100a + 90b = 0\) Let's solve these equations together. I'll proceed to solve the system of equations. Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}6400a+80b=9\\8100a+90b=0\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}a=\frac{9-80b}{6400}\\8100a+90b=0\end{array}\right.\) - step2: Substitute the value of \(a:\) \(8100\times \frac{9-80b}{6400}+90b=0\) - step3: Multiply the terms: \(\frac{81\left(9-80b\right)}{64}+90b=0\) - step4: Multiply both sides of the equation by LCD: \(\left(\frac{81\left(9-80b\right)}{64}+90b\right)\times 64=0\times 64\) - step5: Simplify the equation: \(729-720b=0\) - step6: Move the constant to the right side: \(-720b=0-729\) - step7: Remove 0: \(-720b=-729\) - step8: Change the signs: \(720b=729\) - step9: Divide both sides: \(\frac{720b}{720}=\frac{729}{720}\) - step10: Divide the numbers: \(b=\frac{81}{80}\) - step11: Substitute the value of \(b:\) \(a=\frac{9-80\times \frac{81}{80}}{6400}\) - step12: Calculate: \(a=-\frac{9}{800}\) - step13: Calculate: \(\left\{ \begin{array}{l}a=-\frac{9}{800}\\b=\frac{81}{80}\end{array}\right.\) - step14: Check the solution: \(\left\{ \begin{array}{l}a=-\frac{9}{800}\\b=\frac{81}{80}\end{array}\right.\) - step15: Rewrite: \(\left(a,b\right) = \left(-\frac{9}{800},\frac{81}{80}\right)\) The solution to the system of equations gives us the values of \(a\) and \(b\): 1. \(a = -\frac{9}{800}\) 2. \(b = \frac{81}{80}\) ### Step 4: Find the Vertex of the Parabola The vertex of a parabola given by the equation \(y = ax^2 + bx + c\) can be found using the formula: \[ x = -\frac{b}{2a} \] Substituting the values of \(a\) and \(b\): \[ x = -\frac{\frac{81}{80}}{2 \cdot -\frac{9}{800}} = -\frac{\frac{81}{80}}{-\frac{18}{800}} = \frac{81 \cdot 800}{80 \cdot 18} \] Now, let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(\frac{81\times 800}{\left(80\times 18\right)}\) - step1: Remove the parentheses: \(\frac{81\times 800}{80\times 18}\) - step2: Multiply the numbers: \(\frac{64800}{80\times 18}\) - step3: Multiply the numbers: \(\frac{64800}{1440}\) - step4: Reduce the fraction: \(45\) The x-coordinate of the vertex is \(x = 45\). ### Step 5: Calculate the Maximum Height Now, we will substitute \(x = 45\) back into the parabolic equation to find the maximum height \(y\). Using the equation: \[ y = ax^2 + bx + c \] Substituting \(a\), \(b\), and \(c\): \[ y = -\frac{9}{800}(45^2) + \frac{81}{80}(45) + 1 \] Let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(\frac{-9}{800}\times 45^{2}+\frac{81}{80}\times 45+1\) - step1: Rewrite the fraction: \(-\frac{9}{800}\times 45^{2}+\frac{81}{80}\times 45+1\) - step2: Multiply the numbers: \(-\frac{9^{3}}{32}+\frac{81}{80}\times 45+1\) - step3: Multiply the numbers: \(-\frac{9^{3}}{32}+\frac{729}{16}+1\) - step4: Evaluate the power: \(-\frac{729}{32}+\frac{729}{16}+1\) - step5: Reduce fractions to a common denominator: \(-\frac{729}{32}+\frac{729\times 2}{16\times 2}+\frac{16\times 2}{16\times 2}\) - step6: Multiply the numbers: \(-\frac{729}{32}+\frac{729\times 2}{32}+\frac{16\times 2}{16\times 2}\) - step7: Multiply the numbers: \(-\frac{729}{32}+\frac{729\times 2}{32}+\frac{16\times 2}{32}\) - step8: Transform the expression: \(\frac{-729+729\times 2+16\times 2}{32}\) - step9: Multiply the numbers: \(\frac{-729+1458+16\times 2}{32}\) - step10: Multiply the numbers: \(\frac{-729+1458+32}{32}\) - step11: Add the numbers: \(\frac{761}{32}\) The maximum height \(y\) that the ball reached is approximately \(23.78\) meters. ### Conclusion The highest point the ball reached as it flew through the air was closest to **23.78 meters**. Thus, the answer is not among the options provided (like 070), but the calculated height is approximately **23.78 meters**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

While it’s easy to get caught up in the excitement of the game, let’s delve into some classic cricket lore! Did you know that cricket is thought to date back to the 16th century in England? Initially played by children in the streets, it evolved into a highly organized sport with defined rules, much like the parabolic trajectory of the ball soaring through the sky! For those pondering the intricacies of that flight path, it’s crucial to visualize the parabolic arc! A common mistake is not considering the symmetry of parabolas; the highest point will occur exactly mid-way between the starting point and where it will land. In this case, ensure to calculate the vertex of the parabola effectively, leveraging the height and distance provided!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad