7 VOU \& MATHS Consider the following functions: \[ f(x)=2 x-4, g(x)=2 x+4 \text {, } \] \[ h(x)=9 x+3 \text {. } \] Are there inputs that give the same outputs for functions \( f \) and \( g \) ? And for functions \( f \) and \( h \) ? And for \( g \) and \( h \) ?
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find the inputs that give the same outputs for the functions \( f(x) \), \( g(x) \), and \( h(x) \), we need to set them equal to each other and solve for \( x \). 1. For \( f(x) \) and \( g(x) \): \[ 2x - 4 = 2x + 4 \] Simplifying this gives \( -4 = 4 \), which is a contradiction. So, there are no inputs that provide the same output for \( f(x) \) and \( g(x) \). 2. For \( f(x) \) and \( h(x) \): \[ 2x - 4 = 9x + 3 \] Rearranging gives us \( -4 - 3 = 9x - 2x \) leading to \( -7 = 7x \) or \( x = -1 \). Thus, \( f(-1) = h(-1) = -6 \). 3. For \( g(x) \) and \( h(x) \): \[ 2x + 4 = 9x + 3 \] Rearranging gives us \( 4 - 3 = 9x - 2x \) leading to \( 1 = 7x \) or \( x = \frac{1}{7} \). Thus, \( g\left(\frac{1}{7}\right) = h\left(\frac{1}{7}\right) = \frac{18}{7} \). In summary: - No inputs yield the same outputs for \( f \) and \( g \). - The input \( x = -1 \) gives the same output for \( f \) and \( h \). - The input \( x = \frac{1}{7} \) gives the same output for \( g \) and \( h \).
