Pregunta

11. a) Sketch the following modulus functions and determine their domain and range i) \( f(x)=|-3 x+1|+1 \) ii) \( f(x)=\left|x^{2}+5 x+4\right|-2 \quad \) iv) \( f(x)=\left|x^{2}+x-6\right|-3 \) b) Given the quadratic function \( f(x)-6 x^{2}+x \quad 2 \) (i) Find the \( y \), intercept and the \( x \) - intercept. (ii) Determine the maximum or the minimum point of the function. (iii) Sketch the graph of \( f(x)-6 x^{2}+x-2 \) and the graph of \( g(x)-\left|6 x^{2}+x-2\right| \).

Ask by Crawford Sherman. in Zambia
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Part 11a: Modulus Functions** 1. **i) \( f(x) = |-3x + 1| + 1** - **Domain:** All real numbers - **Range:** \( [1, \infty) \) 2. **ii) \( f(x) = |x^2 + 5x + 4| - 2** - **Domain:** All real numbers - **Range:** \( [-2, \infty) \) 3. **iii) \( f(x) = |x^2 + x - 6| - 3** - **Domain:** All real numbers - **Range:** \( [-3, \infty) \) **Part 11b: Quadratic Function Analysis** 1. **i) Intercepts** - **Y-intercept:** \( (0, -2) \) - **X-intercepts:** \( \left(\frac{2}{3}, 0\right) \) and \( \left(-\frac{1}{2}, 0\right) \) 2. **ii) Maximum Point:** - Vertex at \( \left(\frac{1}{12}, -\frac{47}{24}\right) \) 3. **iii) Graphs of \( f(x) = -6x^2 + x - 2 \) and \( g(x) = |6x^2 + x - 2| \)** - Plot the quadratic function and its absolute value to visualize the behavior of both functions.

Solución

Let's break down the problem step by step. ### Part 11a: Sketching Modulus Functions #### i) \( f(x) = |-3x + 1| + 1 \) 1. **Domain**: The domain of \( f(x) \) is all real numbers, \( (-\infty, \infty) \). 2. **Range**: Since the absolute value function is always non-negative, the minimum value of \( f(x) \) occurs when \( |-3x + 1| = 0 \). This happens when \( -3x + 1 = 0 \) or \( x = \frac{1}{3} \). Thus, the minimum value of \( f(x) \) is \( 1 \). Therefore, the range is \( [1, \infty) \). #### ii) \( f(x) = |x^2 + 5x + 4| - 2 \) 1. **Domain**: The domain is all real numbers, \( (-\infty, \infty) \). 2. **Finding the roots of the quadratic**: \[ x^2 + 5x + 4 = 0 \] Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-5 \pm \sqrt{25 - 16}}{2} = \frac{-5 \pm 3}{2} \] This gives us roots \( x = -1 \) and \( x = -4 \). 3. **Range**: The minimum value of \( |x^2 + 5x + 4| \) occurs at the vertex of the parabola, which is at \( x = -\frac{b}{2a} = -\frac{5}{2} = -2.5 \). Evaluating \( f(-2.5) \): \[ f(-2.5) = |(-2.5)^2 + 5(-2.5) + 4| - 2 = |6.25 - 12.5 + 4| - 2 = |-2.25| - 2 = 2.25 - 2 = 0.25 \] Therefore, the range is \( [-2, \infty) \). #### iii) \( f(x) = |x^2 + x - 6| - 3 \) 1. **Domain**: The domain is all real numbers, \( (-\infty, \infty) \). 2. **Finding the roots of the quadratic**: \[ x^2 + x - 6 = 0 \] Using the quadratic formula: \[ x = \frac{-1 \pm \sqrt{1 + 24}}{2} = \frac{-1 \pm 5}{2} \] This gives us roots \( x = 2 \) and \( x = -3 \). 3. **Range**: The vertex occurs at \( x = -\frac{b}{2a} = -\frac{1}{2} \). Evaluating \( f(-0.5) \): \[ f(-0.5) = |(-0.5)^2 + (-0.5) - 6| - 3 = |0.25 - 0.5 - 6| - 3 = |-6.25| - 3 = 6.25 - 3 = 3.25 \] Therefore, the range is \( [-3, \infty) \). ### Part 11b: Quadratic Function Analysis Given the function \( f(x) = -6x^2 + x - 2 \): #### i) Finding the intercepts 1. **Y-intercept**: Set \( x = 0 \): \[ f(0) = -6(0)^2 + (0) - 2 = -2 \] So, the y-intercept is \( (0, -2) \). 2. **X-intercepts**: Set \( f(x) = 0 \): \[ -6x^2 + x - 2 = 0 \] Using the quadratic formula: \[ x = \frac{-1 \pm \sqrt{1 + 48}}{-12} = \frac{-1 \pm 7}{-12} \] This gives us: \[ x = \frac{-8}{-12} = \frac{2}{3}, \quad x = \frac{6}{-12} = -\frac{1}{2} \] So, the x-intercepts are \( \left(\frac{2}{3}, 0\right) \) and \( \left(-\frac{1}{2}, 0\right) \). #### ii) Maximum or Minimum Point The vertex occurs at \( x = -\frac{b}{2a} = -\frac{1}{-12} = \frac{1}{12} \). Evaluating \( f\left(\frac{1}{12}\right) \): \[ f\left(\frac{1}{12}\right) = -6\left(\frac{1}{12}\right)^2 + \left(\frac{1}{12}\right) - 2 = -\frac{6}{144} + \frac{1}{12} - 2 = -\frac{1}{24} + \frac{2}{24} - \frac{48}{24} = -\frac{47}{24} \] Thus, the maximum point is \( \left(\frac{1}{12}, -\frac{47}{24}\right) \). #### iii) Sketching the Graphs To sketch the graphs of \( f(x) = -6x^2 + x - 2 \) and \( g(x) = |6x^2 + x - 2| \), we can plot the quadratic function and its absolute value. Now, I will proceed to calculate the necessary values for the graphs of \( f(x) \) and \( g(x) \). ### Calculating the Graphs Let's calculate the vertex and intercepts for \( g(x) = |6x^2 + x - 2| \) to understand its shape. 1. **Finding the roots of \( 6x^2 + x - 2 = 0 \)**: \[ x = \frac{-1 \pm \sqrt{1 + 48}}{12} = \frac{-1 \pm 7}{12} \] This gives us roots \( x = \frac{1}{3} \) and \( x = -\frac{2}{3} \). 2. **Finding the vertex of \( 6x^2 + x - 2 \)**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To dive into modulus functions, let’s first talk about their historical usage. Modulus functions have deep roots in mathematics, serving as a bridge between various mathematical disciplines. They popped up alongside the development of absolute values in algebra, helping to understand distance and deviation without being bogged down by negative signs. This concept is fundamental in many disciplines, ranging from physics to economics, where the magnitude of a change is all that really matters! Now, let's consider their real-world applications! Imagine you're tracking the distance of a car from a starting point, regardless of whether it's moving forward or backward. Using modulus functions allows you to express this as a non-negative value, which is essential in GPS technology, navigation systems, and even in algorithms for video games that react to player movement. The absolute value can model scenarios where direction doesn't matter, only distance does! Isn’t math just brilliant?

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad