Pregunta
he perimeter of a rectangle is 42 km . The length of the rectangle is 12 km . Find the widt nd the area of the rectangle. Width \( = \) Area \( = \) 12 km
Ask by Lowe Carrillo. in Ethiopia
Feb 18,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Width \( = 9 \) km
Area \( = 108 \) km²
Solución
To solve the problem, we need to find the width and area of the rectangle given the perimeter and length.
### Step 1: Extract Known Conditions
- Perimeter \( P = 42 \) km
- Length \( L = 12 \) km
### Step 2: Use the Perimeter Formula
The formula for the perimeter of a rectangle is given by:
\[
P = 2L + 2W
\]
where \( W \) is the width.
### Step 3: Substitute Known Values
Substituting the known values into the perimeter formula:
\[
42 = 2(12) + 2W
\]
### Step 4: Simplify the Equation
Calculating \( 2(12) \):
\[
42 = 24 + 2W
\]
### Step 5: Solve for Width \( W \)
Subtract 24 from both sides:
\[
42 - 24 = 2W
\]
\[
18 = 2W
\]
Now, divide both sides by 2:
\[
W = \frac{18}{2} = 9 \text{ km}
\]
### Step 6: Calculate the Area
The area \( A \) of a rectangle is given by:
\[
A = L \times W
\]
Substituting the values of \( L \) and \( W \):
\[
A = 12 \times 9
\]
### Step 7: Perform the Calculation
Calculating the area:
\[
A = 108 \text{ km}^2
\]
### Final Answers
- Width \( W = 9 \) km
- Area \( A = 108 \) km²
Thus, the width of the rectangle is \( 9 \) km and the area is \( 108 \) km².
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To find the width of the rectangle, we can use the formula for the perimeter of a rectangle, which is \(P = 2(L + W)\). Given that the perimeter is 42 km and the length is 12 km, we can set up the equation: \(42 = 2(12 + W)\). Dividing both sides by 2 gives us: \(21 = 12 + W\). Subtracting 12 from both sides yields: \(W = 9\) km. Now to find the area, we use the formula for the area of a rectangle, \(A = L \times W\): Area \(= 12 \times 9 = 108\) km². So, Width \( = 9\) km and Area \( = 108\) km².
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium