Given \( h(x)=\left(\frac{1}{s}\right)^{x} \) 7.3.1 Determine the equation of \( x-1(x) \), the inverse of \( h \), in the forn \( y=\ldots \) 7.3.2 Describe the transformation from, 8 to \( h \). i
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the inverse of \( h(x) = \left(\frac{1}{s}\right)^x \), we start by setting \( y = h(x) \). This gives us \( y = \left(\frac{1}{s}\right)^x \). To solve for \( x \), we take the logarithm of both sides: \[ x = \log_{\frac{1}{s}}(y). \] Thus, the equation of the inverse function \( h^{-1}(x) \) can be expressed as: \[ y = \log_{\frac{1}{s}}(x). \] Now, regarding the transformation from \( y = 8 \) to \( h \), we notice that \( h(x) \) represents an exponential decay function due to the base being \( \frac{1}{s} \). Transitioning from the horizontal line \( y = 8 \) to the decay curve of \( h(x) \) involves a vertical shift downwards. Thus, where the horizontal line intersects will reflect into a point on the curve, as the exponential decay values decrease rapidly. This transformation can be visually illustrated through a graph, showing how the constant value \( 8 \) is lowered by the effect of the decreasing exponential function.
