Pregunta
upstudy study bank question image url

Given \( h(x)=\left(\frac{1}{s}\right)^{x} \) 7.3.1 Determine the equation of \( x-1(x) \), the inverse of \( h \), in the forn \( y=\ldots \) 7.3.2 Describe the transformation from, 8 to \( h \). i

Ask by Tyler Donnelly. in South Africa
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

7.3.1 The inverse of \( h(x) \) is \( h^{-1}(x) = \frac{\ln(x)}{\ln(1/s)} \) or \( h^{-1}(x) = -\frac{\ln(x)}{\ln(s)} \) or \( h^{-1}(x) = -\log_{s} x \). 7.3.2 The function \( h(x) = \left(\frac{1}{s}\right)^x \) is obtained from \( f(x) = s^x \) by reflecting its graph across the y-axis.

Solución

We are given the function   h(x) = (1/s)^x. Below are the steps to solve each part. ────────────────────────────── 1. Inverse Function of h(x) To find the inverse function, h⁻¹(x), we start with   y = (1/s)^x. Step 1. Interchange x and y (since the inverse “swaps” the roles of the input and output):   x = (1/s)^y. Step 2. Solve for y. To do so, take the natural logarithm on both sides:   ln(x) = ln((1/s)^y). Step 3. Use the logarithm power rule (ln(a^b) = b·ln(a)):   ln(x) = y · ln(1/s). Step 4. Solve for y:   y = ln(x) / ln(1/s). Thus, one acceptable form for the inverse is   h⁻¹(x) = ln(x) / ln(1/s). An equivalent form can be obtained by recalling that ln(1/s) = –ln s. Therefore, we may also write   h⁻¹(x) = –ln(x)/ln(s). Yet another equivalent way to express the answer is to use logarithms with base s:   h⁻¹(x) = –logₛ x. ────────────────────────────── 2. Transformation from the Base Exponential to h(x) Observe that   h(x) = (1/s)^x = s^(–x). This means that h(x) is obtained from the usual exponential function f(x)=s^x by replacing x with –x. Geometrically, replacing x with –x reflects the graph about the y-axis. In summary, the transformation from the graph of f(x)=s^x to the graph of h(x)=s^(–x) is:   • A reflection across the y–axis. ────────────────────────────── Final Answers 7.3.1 The inverse of h(x) is   h⁻¹(x) = ln(x) / ln(1/s)    or  h⁻¹(x) = –ln(x)/ln(s)  or  h⁻¹(x) = –logₛ x. 7.3.2 The function h(x) = (1/s)^x is obtained from f(x)=s^x by reflecting its graph in the y-axis (i.e. replacing x with –x).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the inverse of \( h(x) = \left(\frac{1}{s}\right)^x \), we start by setting \( y = h(x) \). This gives us \( y = \left(\frac{1}{s}\right)^x \). To solve for \( x \), we take the logarithm of both sides: \[ x = \log_{\frac{1}{s}}(y). \] Thus, the equation of the inverse function \( h^{-1}(x) \) can be expressed as: \[ y = \log_{\frac{1}{s}}(x). \] Now, regarding the transformation from \( y = 8 \) to \( h \), we notice that \( h(x) \) represents an exponential decay function due to the base being \( \frac{1}{s} \). Transitioning from the horizontal line \( y = 8 \) to the decay curve of \( h(x) \) involves a vertical shift downwards. Thus, where the horizontal line intersects will reflect into a point on the curve, as the exponential decay values decrease rapidly. This transformation can be visually illustrated through a graph, showing how the constant value \( 8 \) is lowered by the effect of the decreasing exponential function.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad