Pregunta
upstudy study bank question image url

Use the definition of the absolute value to expand and write the function \( f(x)=|x-4|-5 \) as a plecewise define function. Choose the most correct answer. (A) \( f(x)=\left\{\begin{array}{ll}x-9 & \text { if } x \geq 0 \\ -x-1 & \text { if } x<0\end{array}\right. \) (B) \( f(x)=\left\{\begin{array}{ll}x-9 & \text { if } x \geq 4 \\ -x-1 & \text { if } x<4\end{array}\right. \) (C) \( f(x)=\left\{\begin{array}{ll}x-9 & \text { if } x \geq 0 \\ -x-9 & \text { if } x<0\end{array}\right. \) (D) \( f(x)=\left\{\begin{array}{ll}x-9 & \text { if } x \geq 4 \\ -x-9 & \text { if } x<4\end{array}\right. \) (E) None of these

Ask by Zimmerman Adkins. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct answer is (B): \( f(x) = \left\{ \begin{array}{ll} x - 9 & \text{if } x \geq 4 \\ -x - 1 & \text{if } x < 4 \end{array} \right. \)

Solución

To write f(x) = |x – 4| – 5 as a piecewise defined function, we use the definition of the absolute value: |x – 4| =   (x – 4) if x – 4 ≥ 0 (i.e., x ≥ 4)   –(x – 4) if x – 4 < 0 (i.e., x < 4) Thus: For x ≥ 4: f(x) = (x – 4) – 5 = x – 9 For x < 4: f(x) = –(x – 4) – 5 = –x + 4 – 5 = –x – 1 Comparing with the options, the correct choice is (B). So, the answer is: (B) f(x) =   {x – 9 if x ≥ 4   –x – 1 if x < 4}

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To express the function \( f(x) = |x-4| - 5 \) as a piecewise-defined function, we first recognize that the absolute value function \( |x-4| \) has different expressions based on the value of \( x \). Specifically, if \( x \geq 4 \), then \( |x-4| = x-4 \), and if \( x < 4 \), then \( |x-4| = -(x-4) = -x + 4 \). Now, we can use these conditions to rewrite \( f(x) \): 1. For \( x \geq 4 \): \( f(x) = (x-4) - 5 = x - 9 \) 2. For \( x < 4 \): \( f(x) = (-x + 4) - 5 = -x - 1 \) Therefore, the piecewise function is: \[ f(x) = \begin{cases} x - 9 & \text{if } x \geq 4 \\ -x - 1 & \text{if } x < 4 \end{cases} \] The correct answer is: (B) \( f(x) = \left\{\begin{array}{ll}x-9 & \text { if } x \geq 4 \\ -x-1 & \text { if } x<4\end{array}\right. \) Now, let's expand on this topic! The concept of absolute value has a rich historical background. It originates from the need to measure distances, ensuring that outcomes are always non-negative, paving the way for establishing fundamental algebraic principles. Ancient mathematicians recognized that thinking of distances in negative terms didn’t make sense, leading to the definition of absolute value we use today! In the real world, the application of absolute value is everywhere! For instance, it's critical in fields like engineering and finance, where the difference in quantities (like profit and loss) needs to be assessed without the chaos of negative values interfering. It helps you understand how far you are from a baseline, such as zero debt or loss, regardless of direction!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad