Pregunta
upstudy study bank question image url

QUESTION 1 DBE NOV 17 Q1 1.1 Solve for \( x \) : 1.1.1 \( \quad(2 x-3)(x+7)=0 \) 1.1.2 \( 7 x^{2}+3 x-2=0 \) (leave your answer correct to TWO decimal places) (3) 1.1.3 \( \sqrt{x-1}+3=x \) 1.1.4 \( \quad x^{2}>3(x+6) \) 1.2 Solve for \( x \) and \( y \) simultaneously: \[ \begin{array}{l} 2 y+x=1 \\ x^{2}+y^{2}+3 x y+y=0 \end{array} \]

Ask by Murray Bartlett. in South Africa
Jan 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Solutions: 1.1.1: \( x = -7 \) or \( x = 1.5 \) 1.1.2: \( x \approx -0.79 \) or \( x \approx 0.36 \) 1.1.3: \( x = 5 \) 1.1.4: \( x < -3 \) or \( x > 6 \) 1.2: \( (x, y) = (-1, 1) \) or \( (x, y) = (3, -1) \)

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

To solve the quadratic equations and inequalities, it's crucial to remember that each step builds upon the last. For the equation \((2x - 3)(x + 7) = 0\), we can set each factor to zero, giving two potential solutions: \(x = \frac{3}{2}\) and \(x = -7\). For the quadratic equation \(7x^2 + 3x - 2 = 0\), apply the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\) to find solutions approximately equal to \(x \approx 0.19\) and \(x \approx -1.57\). When solving \( \sqrt{x-1} + 3 = x \), isolate \( \sqrt{x-1} = x - 3 \) and then square both sides. This will yield the solution \(x \approx 4\). For the inequality \(x^2 > 3(x + 6)\), first rearrange to \(x^2 - 3x - 18 > 0\). This gives roots at \(x = 6\) and \(x = -3\). The solution sets can be expressed in intervals. Simultaneously solving the equations involves substitution or elimination. From \(2y + x = 1\), you can express \(x\) in terms of \(y\) (i.e., \(x = 1 - 2y\)) and substitute into the second equation, yielding a solvable quadratic that results in values for \(x\) and \(y\). --- For a bit of math nostalgia, did you know that the quadratic formula has its roots (no pun intended) back in ancient civilizations? The Babylonians were solving quadratic equations as far back as 2000 BC, using geometric methods to find solutions without the algebraic symbols we use today! If you're looking to improve your problem-solving skills, remember: always check your solutions by plugging them back into the original equations. It's easy to make mistakes when manipulating equations, especially with squaring both sides or handling negative numbers, so double-checking helps catch those pesky errors!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad