Pregunta
upstudy study bank question image url

A car service charges customers a flat fee per ride (which is higher during rush hour traffic) plus charges for each minute and each mile. Suppose that, in a certain metropolitan area during rush hour, the flat fee is \( \$ 5 \), the cost per minute is \( \$ 0.30 \), and the cost per mile is \( \$ 1.20 \). Let \( x \) be the number of minutes and \( y \) the number of miles. At the end of a ride, the driver said that the passenger owed \( \$ 11.30 \) and remarked that the number of minutes was three times the number of miles. Find the number of minutes and the number of miles for this trip. \( 3+U .3 u x+1.20 y=11.30 \) (Do not include the \( \$ \) symbol in your answer. Do not simplify. Use integers or decimals for any numbers in the equation.) Complete the equation that represents the relationship between the number of minutes and number of miles. \( \square=0 \) (Do not simplify. Use integers or decimals for any numbers in the equation.)

Ask by Marshall Macdonald. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Number of minutes: 9 Number of miles: 3

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

To solve this problem, we begin by translating the information into equations based on the cost structure provided. Let \( x \) represent the number of minutes, and \( y \) represent the number of miles. From the driver's remarks, "the number of minutes was three times the number of miles," we can express that relationship as: \( x = 3y \). Now, substituting this into the cost equation, we know that the total cost for the ride is the flat fee plus the cost per minute and per mile. This leads us to the equation: \( 5 + 0.30x + 1.20y = 11.30 \). Subtract the flat fee of 5 from both sides: \( 0.30x + 1.20y = 6.30 \). Now we can substitute \( x = 3y \) into this equation: \( 0.30(3y) + 1.20y = 6.30 \). This simplifies to: \( 0.90y + 1.20y = 6.30 \), which further simplifies to: \( 2.10y = 6.30 \). Dividing both sides by 2.10 gives: \( y = 3 \). Using \( y = 3 \) in the relationship \( x = 3y \) yields: \( x = 3(3) = 9 \). Hence, the number of minutes is \( 9 \) and the number of miles is \( 3 \). The complete cost equation reflecting the relationship is thus: \( 3 - y = 0 \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad