Pregunta
upstudy study bank question image url

If a circle inas radius 3 cm what is the length of a arc subtendud by 9 centril angle of \( \frac{3 \pi}{8} \) rad

Ask by Perkins Boyd. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The length of the arc is approximately 3.534 cm.

Solución

To find the length of an arc subtended by a central angle in a circle, we can use the formula: \[ \text{Length of arc} = \frac{\theta}{360} \times 2\pi r \] where: - \( \theta \) is the central angle in degrees, - \( r \) is the radius of the circle. Given: - Radius of the circle, \( r = 3 \) cm, - Central angle, \( \theta = \frac{3\pi}{8} \) radians. First, we need to convert the central angle from radians to degrees. The conversion factor is that \( 1 \) radian is equal to \( \frac{180}{\pi} \) degrees. So, the central angle in degrees is: \[ \theta_{\text{degrees}} = \frac{3\pi}{8} \times \frac{180}{\pi} = \frac{3 \times 180}{8} = 67.5 \text{ degrees} \] Now, we can substitute the values into the formula to find the length of the arc: \[ \text{Length of arc} = \frac{67.5}{360} \times 2\pi \times 3 \] Let's calculate this. Calculate the value by following steps: - step0: Calculate: \(\frac{67.5}{360}\times 2\pi \times 3\) - step1: Divide the terms: \(\frac{3}{16}\times 2\pi \times 3\) - step2: Multiply the terms: \(\frac{9}{8}\pi \) - step3: Multiply: \(\frac{9\pi }{8}\) The length of the arc subtended by a central angle of \( \frac{3\pi}{8} \) radians in a circle with a radius of 3 cm is approximately 3.534 cm.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the length of the arc, we use the formula: \( \text{Arc Length} = r \times \theta \), where \( r \) is the radius and \( \theta \) is the central angle in radians. Here, substituting the values, we have \( \text{Arc Length} = 3 \, \text{cm} \times \frac{3\pi}{8} = \frac{9\pi}{8} \, \text{cm} \). So, the length of the arc is approximately 3.54 cm! Did you know that the concept of arcs dates back to ancient civilizations? The Greeks studied circles extensively, with mathematicians like Archimedes calculating areas and segments. Their fascination with circles laid the groundwork for modern geometry, and even today, the principles of circular motion are integral in fields like physics and engineering!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad