8-2 Classw 1. In \( \triangle Q R S, q=93 \mathrm{~cm}, r=77 \mathrm{~cm} \) and \( \angle S=56^{\circ} \). Find the length of \( s \), to the nearest centimeter.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the length of side \( s \) in triangle \( QRS \), we can use the Law of Cosines, which states: \[ s^2 = q^2 + r^2 - 2qr \cdot \cos(S) \] Plugging in the given values: \[ s^2 = 93^2 + 77^2 - 2 \cdot 93 \cdot 77 \cdot \cos(56^\circ) \] Calculating each part: - \( 93^2 = 8649 \) - \( 77^2 = 5929 \) - \( \cos(56^\circ) \approx 0.5592 \) - \( 2 \cdot 93 \cdot 77 \cdot 0.5592 \approx 6965.78 \) Now, substituting these values back: \[ s^2 \approx 8649 + 5929 - 6965.78 \] \[ s^2 \approx 7612.22 \] Taking the square root gives: \[ s \approx \sqrt{7612.22} \approx 87.2 \text{ cm} \] Rounding to the nearest centimeter, the length of side \( s \) is approximately \( 87 \text{ cm} \).
