Pregunta
upstudy study bank question image url

Emily places a loading ramp next to her truck. The height of the ramp is 7 feet, and an inclined portion of the ramp is 20 feet long. What angle does the ramp make with the ground? Round your answer to one decimal place. The ramp makes an angle of Number degrees with the ground.

Ask by Hamilton Barnett. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The ramp makes an angle of 20.5 degrees with the ground.

Solución

To find the angle that the ramp makes with the ground, we can use the sine function from trigonometry. The sine of an angle in a right triangle is defined as the ratio of the length of the opposite side to the length of the hypotenuse. In this case: - The height of the ramp (opposite side) is \( h = 7 \) feet. - The length of the ramp (hypotenuse) is \( l = 20 \) feet. We can use the formula: \[ \sin(\theta) = \frac{h}{l} \] Where \( \theta \) is the angle we want to find. Rearranging this gives us: \[ \theta = \arcsin\left(\frac{h}{l}\right) \] Now, substituting the known values: \[ \theta = \arcsin\left(\frac{7}{20}\right) \] Let's calculate this angle. Calculate the value by following steps: - step0: Calculate: \(\arcsin\left(\frac{7}{20}\right)\) Calculate or simplify the expression \( \sin(0.357571) \). Calculate the value by following steps: - step0: Calculate: \(\sin\left(0.357571\right)\) Calculate or simplify the expression \( 0.357571 * (180/\pi) \). Calculate the value by following steps: - step0: Calculate: \(0.357571\times \frac{180}{\pi }\) - step1: Convert the expressions: \(\frac{357571}{1000000}\times \frac{180}{\pi }\) - step2: Multiply the fractions: \(\frac{357571\times 180}{1000000\pi }\) - step3: Multiply the terms: \(\frac{64362780}{1000000\pi }\) - step4: Reduce the fraction: \(\frac{3218139}{50000\pi }\) Now that we have calculated the angle, we find: \[ \theta \approx 20.5 \text{ degrees} \] Thus, the ramp makes an angle of approximately **20.5 degrees** with the ground when rounded to one decimal place.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the angle that the ramp makes with the ground, you can use the sine function, which relates the opposite side (height of the ramp) to the hypotenuse (length of the ramp). The formula is: \[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{7 \text{ feet}}{20 \text{ feet}}. \] Using this, we find: \[ \theta = \arcsin\left(\frac{7}{20}\right) \approx 20.6 \text{ degrees}. \] Therefore, the ramp makes an angle of approximately 20.6 degrees with the ground. For a more hands-on approach, you could break out a protractor and physically measure the angle if you're able to safely access the ramp. Or, you could simulate this experiment by propping up a board at a similar incline and using a level to check your angles. It's not only an informative exercise but also a fun way to engage with practical geometry! If you're interested in deeper concepts, you might want to explore trigonometric functions in various real-life applications such as architecture, engineering, and even video game design. Understanding how angles and lengths interact can really illuminate the calculus behind your favorite structures or digital worlds!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad