Pregunta
upstudy study bank question image url

Express each of the following complex numbers in polar form a. \( -\sqrt{6}-\sqrt{2} i \) b. \( -3 i \) c. \( 5+2 i \)

Ask by Ball Lowe. in Ghana
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. \( -\sqrt{6} - \sqrt{2}i = 2\sqrt{2} \left( \cos\left(\frac{7\pi}{6}\right) + i \sin\left(\frac{7\pi}{6}\right) \right) \) b. \( -3i = 3 \left( \cos\left(-\frac{\pi}{2}\right) + i \sin\left(-\frac{\pi}{2}\right) \right) \) or \( 3 \left( \cos\left(\frac{3\pi}{2}\right) + i \sin\left(\frac{3\pi}{2}\right) \right) \) c. \( 5 + 2i = \sqrt{29} \left( \cos\left(\arctan\left(\frac{2}{5}\right)\right) + i \sin\left(\arctan\left(\frac{2}{5}\right)\right) \right) \)

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

To express the complex numbers in polar form, we need to find their moduli and arguments. For \( -\sqrt{6}-\sqrt{2} i \): 1. **Modulus**: \[ r = \sqrt{(-\sqrt{6})^2 + (-\sqrt{2})^2} = \sqrt{6 + 2} = \sqrt{8} = 2\sqrt{2} \] 2. **Argument**: Since both components are negative, the complex number lies in the third quadrant. \[ \theta = \tan^{-1}\left(\frac{-\sqrt{2}}{-\sqrt{6}}\right) = \tan^{-1}\left(\frac{\sqrt{2}}{\sqrt{6}}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] Adding \(\pi\) for the third quadrant: \[ \theta = \frac{\pi}{6} + \pi = \frac{7\pi}{6} \] Thus, in polar form: \[ -\sqrt{6}-\sqrt{2} i = 2\sqrt{2} \text{cis} \frac{7\pi}{6} \] For \( -3 i \): 1. **Modulus**: \[ r = \sqrt{0^2 + (-3)^2} = \sqrt{9} = 3 \] 2. **Argument**: This number lies on the negative imaginary axis, so \(\theta = -\frac{\pi}{2}\) or \( \frac{3\pi}{2} \). Thus, in polar form: \[ -3 i = 3 \text{cis} \left(-\frac{\pi}{2}\right) \] For \( 5 + 2 i \): 1. **Modulus**: \[ r = \sqrt{5^2 + 2^2} = \sqrt{25 + 4} = \sqrt{29} \] 2. **Argument**: \[ \theta = \tan^{-1}\left(\frac{2}{5}\right) \] Thus, in polar form: \[ 5 + 2 i = \sqrt{29} \text{cis} \left(\tan^{-1}\left(\frac{2}{5}\right)\right) \] In summary: 1. \( -\sqrt{6}-\sqrt{2} i = 2\sqrt{2} \text{cis} \frac{7\pi}{6} \) 2. \( -3 i = 3 \text{cis} \left(-\frac{\pi}{2}\right) \) 3. \( 5 + 2 i = \sqrt{29} \text{cis} \left(\tan^{-1}\left(\frac{2}{5}\right)\right) \)

preguntas relacionadas

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad