Teanne Shayla S. Francisco Annie says that \( \frac{7}{2}^{2} \) equals \( 1^{3} \) because she can she can divide 7 s and subtract the exponents. Writes an explauation so that Annie will whderstand why she is wrong and how to get the correct answer.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
Hey Annie! Let's break this down in a fun way. When you see \( \frac{7}{2}^{2} \), it's like saying you have \( \frac{7^{2}}{2^{2}} \) after you square it. So, \( 7^{2} = 49 \) and \( 2^{2} = 4 \), making \( \frac{49}{4} \). Now, when we look at \( 1^{3} \), that's just 1 because any number to the zero or higher power is itself unless zero! So, \( \frac{7}{2}^{2} \) is actually a lot bigger than \( 1^{3} \). Remember, when you square a fraction, you square both the top (numerator) and the bottom (denominator)! Keep practicing, and you'll get the hang of it!
