Pregunta
upstudy study bank question image url

A quantity with an initial value of 920 decays exponentially at a rate of \( 85 \% \) every week. What is the value of the quantity after 21 days, to the nearest hundredth?

Ask by Lambert Gough. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The value of the quantity after 21 days is approximately 3.11.

Solución

To find the value of the quantity after 21 days, we need to calculate the exponential decay of the quantity over time. Given: - Initial value of the quantity = 920 - Decay rate = 85% per week First, we need to convert the decay rate from percentage to a decimal: \[ 85\% = 0.85 \] Next, we need to calculate the number of weeks in 21 days: \[ 21 \text{ days} = \frac{21}{7} \text{ weeks} = 3 \text{ weeks} \] Now, we can calculate the value of the quantity after 3 weeks using the formula for exponential decay: \[ A = P \times (1 - r)^t \] where: - \( A \) is the final value of the quantity - \( P \) is the initial value of the quantity - \( r \) is the decay rate - \( t \) is the time in weeks Substitute the given values into the formula: \[ A = 920 \times (1 - 0.85)^3 \] Now, we can calculate the value of the quantity after 21 days. Calculate the value by following steps: - step0: Calculate: \(920\left(1-0.85\right)^{3}\) - step1: Subtract the numbers: \(920\times 0.15^{3}\) - step2: Convert the expressions: \(920\left(\frac{3}{20}\right)^{3}\) - step3: Evaluate the power: \(920\times \frac{27}{8000}\) - step4: Multiply: \(\frac{621}{200}\) The value of the quantity after 21 days is approximately 3.105. Therefore, the value of the quantity after 21 days, to the nearest hundredth, is 3.11.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the value of the quantity after 21 days, we first need to determine the decay formula. The formula for exponential decay can be expressed as: \[ N(t) = N_0 \cdot e^{-kt} \] In this case, we know \( N_0 = 920 \) and the decay rate is \( 85\% \), meaning that \( k = 0.85 \) per week. As there are 7 days in a week, the decay rate for one day can be converted as follows: \[ k_{\text{daily}} = \frac{0.85}{7} \approx 0.1214 \] Now, 21 days is equivalent to 3 weeks, hence we can plug in the values into the decay formula. After 21 days: \[ N(21) = 920 \cdot e^{-0.1214 \cdot 21} \] Calculating this: 1. First, calculate \( k \cdot t = 0.1214 \cdot 21 \approx 2.5506 \). 2. Then use \( e^{-2.5506} \) which is approximately \( 0.0789 \). 3. Now, compute \( 920 \cdot 0.0789 \approx 72.9 \). Rounding to the nearest hundredth, the value of the quantity after 21 days is approximately **72.90**. Feel free to ask if you'd like further clarification or to explore related concepts!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad