Pregunta
upstudy study bank question image url

3. The equation of a curve is \( y=\frac{x+4}{5-x} \). Find the gradient of the curve at the point where (i) the curve crosses the \( x \)-axis, (ii) the curve crosses the \( y \)-axis.

Ask by Bond Christensen. in Singapore
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

At the point where the curve crosses the x-axis, the gradient is 1/9. At the point where the curve crosses the y-axis, the gradient is 9/25.

Solución

Given the curve: y = (x + 4)/(5 – x), we first differentiate using the quotient rule. Step 1: Differentiate y = u/v where:   u = x + 4  and  v = 5 – x. The quotient rule is: dy/dx = (v*(du/dx) – u*(dv/dx)) / v². Calculate the derivatives:   du/dx = 1   dv/dx = -1 Thus,   dy/dx = [(5 – x)(1) – (x + 4)(-1)] / (5 – x)²        = [(5 – x) + (x + 4)] / (5 – x)²        = (5 + 4) / (5 – x)²        = 9 / (5 – x)² Step 2: Find the gradient at the crossing points. (i) For the x-axis crossing, y = 0.   Set y = (x + 4)/(5 – x) = 0, then the numerator must be zero.   x + 4 = 0 ⟹ x = -4.   So the intersection point is (-4, 0). Now, compute the gradient at x = -4:   dy/dx = 9 / (5 – (-4))² = 9 / (9)² = 9 / 81 = 1/9. (ii) For the y-axis crossing, x = 0.   Substitute x = 0 into the curve:   y = (0 + 4) / (5 – 0) = 4/5.   So the intersection point is (0, 4/5). Then, compute the gradient at x = 0:   dy/dx = 9 / (5 – 0)² = 9 / 25. Answer:  (i) The gradient at the point where the curve crosses the x-axis is 1/9.  (ii) The gradient at the point where the curve crosses the y-axis is 9/25.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the gradient of the curve at specific points, we first need to calculate the derivative of the function \( y = \frac{x+4}{5-x} \). First, let’s find the derivative \( \frac{dy}{dx} \). Using the quotient rule, where \( u = x + 4 \) and \( v = 5 - x \): \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \( \frac{du}{dx} = 1 \) and \( \frac{dv}{dx} = -1 \): \[ \frac{dy}{dx} = \frac{(5-x)(1) - (x+4)(-1)}{(5-x)^2} = \frac{5 - x + x + 4}{(5-x)^2} = \frac{9}{(5-x)^2} \] Now we can find the gradient at the \( x \)-axis and \( y \)-axis crossings. (i) To find where the curve crosses the \( x \)-axis, set \( y = 0 \): \[ 0 = \frac{x+4}{5-x} \implies x + 4 = 0 \implies x = -4 \] Now, substitute \( x = -4 \) into the derivative: \[ \frac{dy}{dx} \bigg|_{x=-4} = \frac{9}{(5 - (-4))^2} = \frac{9}{9^2} = \frac{9}{81} = \frac{1}{9} \] So, the gradient at the point where the curve crosses the \( x \)-axis is \( \frac{1}{9} \). (ii) To find where the curve crosses the \( y \)-axis, set \( x = 0 \): \[ y = \frac{0 + 4}{5 - 0} = \frac{4}{5} \] Now, substitute \( x = 0 \) into the derivative: \[ \frac{dy}{dx} \bigg|_{x=0} = \frac{9}{(5-0)^2} = \frac{9}{25} \] So, the gradient at the point where the curve crosses the \( y \)-axis is \( \frac{9}{25} \).

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad