The graph of \( g(x)=a\left(\frac{1}{5}\right)^{x}-5 \) passes throughi \( (-2 ;-4) \). 7.1 Show that \( a=\frac{1}{25} \) 7.2 Determine the coordinates of the \( x \) intere \( E^{4} f_{8} \), 7.3 Given: \( h(\tau)=\left(\frac{1}{5}\right)^{x} \) 7.3.1 Determine the cquation of \( x^{-1}(x) \), the inverse of \( h \), in the forks \( y=- \) 7.3.2 Describe the transformation from. g to h .
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find \( a \) in the equation \( g(x) = a\left(\frac{1}{5}\right)^{x} - 5 \) that passes through the point \( (-2, -4) \), substitute \( x = -2 \) and set \( g(-2) = -4 \). This gives: \[ -4 = a\left(\frac{1}{5}\right)^{-2} - 5 \] Solving for \( a \): \[ -4 + 5 = a \cdot 25 \implies 1 = 25a \implies a = \frac{1}{25} \] Now, let’s find the \( x \)-intercept by setting \( g(x) = 0 \): \[ 0 = \frac{1}{25}\left(\frac{1}{5}\right)^{x} - 5 \] Solving gives: \[ \frac{1}{25}\left(\frac{1}{5}\right)^{x} = 5 \implies \left(\frac{1}{5}\right)^{x} = 125 \implies x = -3 \] So, the \( x \)-intercept is \( E( -3; 0) \). For the inverse of \( h(x) = \left(\frac{1}{5}\right)^{x} \), set \( y = \left(\frac{1}{5}\right)^{x} \), then take the logarithm: \[ x = -\log_{5}(y) \implies y = -\log_{5}(x) \] To describe the transformation from \( g \) to \( h \), you can say that \( h(x) \) is derived from \( g(x) \) by first applying an exponential decay function followed by a vertical stretch by \( a \) and a downward shift by \( -5 \). This gives \( g \) a more transformed appearance, moving it down the graph while scaling its outputs based on the factor \( a \).
