Pregunta
upstudy study bank question image url

Given \( f(x)=\frac{-6}{x+2}-3 \). (1) Sketch the graph of \( f \). (2) Write down the equation of the vertical asymptote of \( f \). (3) Write down the equation of the horizontal asymptote of \( f \). (4) Write down the domain of \( f \). (5) Write down the range of \( f \). (6) Determine the equations of the axes of symmetry of \( f \).

Ask by Alexander Pena. in South Africa
Feb 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(1) The graph of \( f(x) = -\frac{6}{x+2} - 3 \) is a hyperbola with a vertical asymptote at \( x = -2 \) and a horizontal asymptote at \( y = -3 \). It has an x-intercept at (–4, 0) and a y-intercept at (0, –6). The branches approach these asymptotes, with one branch for \( x < -2 \) and another for \( x > -2 \). (2) Vertical asymptote: \( x = -2 \). (3) Horizontal asymptote: \( y = -3 \). (4) Domain: All real numbers except \( x = -2 \). (5) Range: All real numbers except \( y = -3 \). (6) Axes of symmetry: \( y = x - 1 \) and \( y = -x - 5 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To sketch the graph of \( f(x) = \frac{-6}{x+2} - 3 \), start by noting its shape, which resembles a hyperbola due to the rational function. The vertical asymptote occurs where the denominator is zero, so set \( x + 2 = 0 \) to find \( x = -2 \). The horizontal asymptote can be observed as \( x \) approaches infinity; since the degree of the numerator is less than that of the denominator, the horizontal asymptote is \( y = -3 \). The domain of \( f \) is all real numbers except for the point that makes the denominator zero, so \( x \in \mathbb{R}, x \neq -2 \). The range, since the function approaches but never reaches the horizontal asymptote, is all real numbers except \( y = -3 \), or \( y \in \mathbb{R}, y \neq -3 \). In terms of symmetry, this function does not have any axes of symmetry due to its asymptotic behavior; rational functions generally don't exhibit traditional symmetry unless they are of a specific form. As for the fun bits, did you know that rational functions can signify a lot about real-world phenomena? For instance, they often model rates of change in economics—think supply and demand curves! With regards to drawing the graph, here’s a tip: sketch the asymptotes first! They serve as borders for where the function can roam, giving you a clear guide for its behavior in the quadrants. But watch out for those pesky vertical asymptotes—your graph should never touch them!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad